如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与F

如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与FG相交于点K,求证:EH,BD,FG三条直线相交于一点... 如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与FG相交于点K,求证:EH,BD,FG三条直线相交于一点 展开
百度网友873dfd8
推荐于2018-02-23 · TA获得超过1816个赞
知道小有建树答主
回答量:626
采纳率:0%
帮助的人:186万
展开全部
证明:
∵EH∩FG=K
∴K∈EH K∈FG
∵EH(平面ABD
∴K∈平面ABD
同理K∈平面BCD
∵平面ABD∩平面BCD=BD
∴K∈BD
∴EH、BD、FG三条直线相交于同一点
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式