请问高中数学数列当中的“错位相减法”是怎么做的?本人忘了,请举例说明,谢谢!

匿名用户
2013-12-03
展开全部
错位相减法,形式很多样,但是本质是一样的。他只要三步走:1,乘公比 2,相减(错位,相减,化简) 3,除系数(把S n前的系数除掉)关键在第二步,非常容易出错!
匿名用户
2013-12-03
展开全部
最简单的应用:1+2 + 4 +…+2^n =S ①两边同时乘以2(错位相减法基本都会乘上一个特殊因数) 2 + 4 +…+2^n+2^(n+1)=2S ②②式减 ①式,相等项相抵消,得S=2^(n+1)-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-03
展开全部
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
  形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
  例如,求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
  当x=1时,Sn=1+3+5+…+(2n-1)=n^2;
  当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);
  ∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;
  两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-2)]-(2n-1)*x^n;
  化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2
  Sn= 1/2+1/4+1/8+....+1/2^n
  两边同时乘以1/2
  1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)
  两式相减
  1/2Sn=1/2-1/2^(n+1)
  Sn=1-1/2^n
  错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式):
  S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)
  在(1)的左右两边同时乘上a。 得到等式(2)如下:
  aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)
  用(1)—(2),得到等式(3)如下:
  (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)
  (1-a)S=a+a2+a3+……+an-1+an-nan+1
  S=a+a2+a3+……+an-1+an用这个的求和公式。
  (1-a)S=a+a2+a3+……+an-1+an-nan+1
  最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
  例子:求和Sn=3x+5x平方+7x三次方+……..+(2n-1)乘以x的n-1次方(x不等于0)
  解:当x=1时,Sn=1+3+5+…..+(2n-1)=n平方
  当x不等于1时,Sn=Sn=3x+5x平方+7x三次方+……..+(2n-1)乘以x的n-1次方
  所以xSn=x+3x平方+5x三次方+7x四次方……..+(2n-1)乘以x的n次方
  所以两式相减的(1-x)Sn=1+2x(1+x+x平方+x三次方+。。。。。+x的n-2次方)-(2n-1)乘以x的n次方。
  化简得:Sn=(2n-1)乘以x得n+1次方 -(2n+1)乘以x的n次方+(1+x)/(1-x)平方
  Cn=(2n+1)*2^n
  Sn=3*2+5*4+7*8+...+(2n+1)*2^n
  2Sn= 3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
  两式相减得
  -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)
  =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)
  =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和)
  =(1-2n)*2^(n+1)-2
  所以Sn=(2n-1)*2^(n+1)+2
  错位相减法
  这个在求等比数列求和公式时就用了
  Sn= 1/2+1/4+1/8+....+1/2^n
  两边同时乘以1/2
  1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)
  两式相减
  1/2Sn=1/2-1/2^(n+1)
  Sn=1-1/2^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式