如何解决带电粒子进入有界磁场问题

铁甲博士
2014-02-16 · TA获得超过3.9万个赞
知道大有可为答主
回答量:6737
采纳率:0%
帮助的人:8507万
展开全部
 当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。如何分析这类相关的问题是本文所讨论的内容。

  一、带电粒子在有界磁场中运动的分析方法

  1.圆心的确定

因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

  2.半径的确定和计算

利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:

  ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

  ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

  3.粒子在磁场中运动时间的确定

若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

  4.带电粒子在两种典型有界磁场中运动情况的分析

①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

  a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)

  b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)

  c、带电粒子在磁场中经历的时间由得出。

  ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

  a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)

  b、带电粒子在磁场中经历的时间由得出。

  二、带电粒子在有界磁场中运动类型的分析

  1.给定有界磁场

(1)确定入射速度的大小和方向,判定带电粒子出射点或其它

【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。

  

  解析:带正电粒子射入磁场后,由于受到洛仑兹力的作用,粒子将沿图6所示的轨迹运动,从A点射出磁场,O、A间的距离为l,射出时速度的大小仍为v0,射出方向与x轴的夹角仍为θ。由洛仑兹力公式和牛顿定律可得,

,(式中R为圆轨道的半径)

解得

R=mv0/qB      ①

圆轨道的圆心位于OA的中垂线上,由几何关系可得

l/2=Rsinθ      ②

联立①、②两式,解得



点评:本题给定带电粒子在有界磁场中运动的入射点和出射点,求该粒子的电量和质量之比,也可以倒过来分析,求出射点的位置。在处理这类问题时重点是画出轨迹图,根据几何关系确定轨迹半径。
11
2024-11-15 广告
上海允若信息科技有限公司成立于2017年,是一家专注于电磁和等离子体仿真测试解决方案咨询、规划、定制开发和实施推广服务的专业化公司,允若意为:一允千金,上善若水。公司核心团队成员都毕业于国内外著名大学,在世界500强企业有多年工作经验。总部... 点击进入详情页
本回答由11提供
利韶段干帅
2019-04-11 · TA获得超过3866个赞
知道大有可为答主
回答量:3088
采纳率:29%
帮助的人:182万
展开全部
 当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。如何分析这类相关的问题是本文所讨论的内容。
  一、带电粒子在有界磁场中运动的分析方法
  1.圆心的确定
因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
  2.半径的确定和计算
利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:
  ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
  ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
  3.粒子在磁场中运动时间的确定
若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
  4.带电粒子在两种典型有界磁场中运动情况的分析
①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
  a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)
  b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)
  c、带电粒子在磁场中经历的时间由得出。
  ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
  a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)
  b、带电粒子在磁场中经历的时间由得出。
  二、带电粒子在有界磁场中运动类型的分析
  1.给定有界磁场
(1)确定入射速度的大小和方向,判定带电粒子出射点或其它
【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。
  
  解析:带正电粒子射入磁场后,由于受到洛仑兹力的作用,粒子将沿图6所示的轨迹运动,从A点射出磁场,O、A间的距离为l,射出时速度的大小仍为v0,射出方向与x轴的夹角仍为θ。由洛仑兹力公式和牛顿定律可得,
,(式中R为圆轨道的半径)
解得
R=mv0/qB      ①
圆轨道的圆心位于OA的中垂线上,由几何关系可得
l/2=Rsinθ      ②
联立①、②两式,解得

点评:本题给定带电粒子在有界磁场中运动的入射点和出射点,求该粒子的电量和质量之比,也可以倒过来分析,求出射点的位置。在处理这类问题时重点是画出轨迹图,根据几何关系确定轨迹半径。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式