函数f(x)=ax³+bx²+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,f′(1/2)=3/2.
(Ⅰ)求f(x)的解析式;(Ⅱ)与偶在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围....
(Ⅰ)求f(x)的解析式;
(Ⅱ)与偶在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围. 展开
(Ⅱ)与偶在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围. 展开
展开全部
答:
f(x)=ax³+bx²+cx在[0,1]上是增函数,
在(-∞,0),(1,+∞)上是减函数
则x=0和x=1是导函数f'(x)的零点:
f'(x)=3ax²+2bx+c
根据韦达定理有:
x1+x2=-2b/(3a)=1
x1*x2=c/(3a)=0
所以:c=0,b=-3a/2
f'(x)=3ax²-3ax
f'(1/2)=3a/4-3a/2=3/2
解得:a=-2,b=3,c=0
所以:f(x)=-2x³+3x²
2)
0<=x<=m上恒有f(x)=-2x³+3x²<=x成立
x=0成立,x>0:-2x²+3x<=1
2x²-3x+1>=0
(2x-1)(x-1)>=0
x>=1或者x<=1/2
所以:0<=x<=m<=1/2
所以:0<m<=1/2
f(x)=ax³+bx²+cx在[0,1]上是增函数,
在(-∞,0),(1,+∞)上是减函数
则x=0和x=1是导函数f'(x)的零点:
f'(x)=3ax²+2bx+c
根据韦达定理有:
x1+x2=-2b/(3a)=1
x1*x2=c/(3a)=0
所以:c=0,b=-3a/2
f'(x)=3ax²-3ax
f'(1/2)=3a/4-3a/2=3/2
解得:a=-2,b=3,c=0
所以:f(x)=-2x³+3x²
2)
0<=x<=m上恒有f(x)=-2x³+3x²<=x成立
x=0成立,x>0:-2x²+3x<=1
2x²-3x+1>=0
(2x-1)(x-1)>=0
x>=1或者x<=1/2
所以:0<=x<=m<=1/2
所以:0<m<=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询