求f(x)=sinx+cosx+sinxcosx的值域
1个回答
展开全部
解:令t=sinx+cosx=√2sin(x+π/4)
故:-√2≤t≤√2
故:t²=1+2sinxcosx
故:sinxcosx=(t²-1)/2
故:f(x)=sinx+cosx+sinxcosx
=t+(t²-1)/2
=1/2•(t²+2t-1)
=1/2•(t+1)²-1
当t=-1时,函数f(x)=sinx+cosx+sinxcosx=1/2•(t+1)²-1取最小值-1
当t=√2时,函数f(x)=sinx+cosx+sinxcosx=1/2•(t+1)²-1取最大值3/2+√2
故:函数f(x)=sinx+cosx+sinxcosx的值域为[-1,3/2+√2]
故:-√2≤t≤√2
故:t²=1+2sinxcosx
故:sinxcosx=(t²-1)/2
故:f(x)=sinx+cosx+sinxcosx
=t+(t²-1)/2
=1/2•(t²+2t-1)
=1/2•(t+1)²-1
当t=-1时,函数f(x)=sinx+cosx+sinxcosx=1/2•(t+1)²-1取最小值-1
当t=√2时,函数f(x)=sinx+cosx+sinxcosx=1/2•(t+1)²-1取最大值3/2+√2
故:函数f(x)=sinx+cosx+sinxcosx的值域为[-1,3/2+√2]
追问
лл
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询