求定积分:∫(0→1)x^2√(1-x)dx

yuyou403
2013-12-11 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部
答:
设t=√(1-x),t^2=1-x,x=1-t^2
x=0,t=1
x=1,t=0
原式
=(1→0) ∫[(1-t^2)^2/t]d(1-t^2)
=(0→1) 2∫[(1-2t^2+t^4)/t] dt
=(0→1) 2∫(1-2t^2+t^4)dt
=(0→1) 2[t-(2/3)t^3+(1/5)t^5]
=2*(1-2/3+1/5)-0
=12/5-4/3
=16/15
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
高州老乡
2013-12-11 · TA获得超过1.2万个赞
知道大有可为答主
回答量:8899
采纳率:76%
帮助的人:2942万
展开全部
x^2/√(1-x)=[-2x^2(1-x)^(1/2)]'+4x(1-x)^(1/2)
=[-2x^2(1-x)^(1/2)]'+[-8x(1-x)^(3/2)/3]'+8(1-x)^(3/2)/3
=[-2x^2(1-x)^(1/2)-8x(1-x)^(3/2)/3]'+[-16(1-x)^(5/2)/15]'
=[-2x^2(1-x)^(1/2)-8x(1-x)^(3/2)/3-16(1-x)^(5/2)/15]'
上限1,所有项为0;对于下限0,只有最后一项不是0.
所以=16/15
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式