如图7-X-10,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的平分线与∠OBA
如图7-X-10,已知∠MON=90°,点A、B分别在射线OM、ON上移动,∠OAB的平分线与∠OBA处的外角平分线所在直线交于点C,试猜想:随着A、B点的移动,∠ACB...
如图7-X-10,已知∠MON=90°,点A、B分别在射线OM、ON上移动,∠OAB的平分线与∠OBA处的外角平分线所在直线交于点C,试猜想:随着A、B点的移动,∠ACB的大小是否变化?说明理由.
展开
1个回答
展开全部
不论A、B两点怎样移动,∠ACB都等于45°
∵ ∠MON=90° ∴ ∠OAB + ∠ABO = 90°
又∵ AC是∠OAB的平分线, ∴ ∠CAB = (1/2)∠OAB
由图 ∠OBD = ∠MON + ∠OAB =90° +∠OAB
∴ ∠OBC =(1/2)∠OBD = (1/2) (90° +∠OAB) =45° +(1/2)∠OAB
∴ ∠ABC = ∠OBC + ∠ABO = ∠OBC + 45° +(1/2)∠OAB
∴ ∠ACB = 180°- ∠CAB -∠ABC
= 180° - (1/2)∠OAB - ∠OBC - 45° - (1/2)∠OAB
= 135° - (∠AOB + ∠OBC)
= 135° - 90° = 45°
∵ ∠MON=90° ∴ ∠OAB + ∠ABO = 90°
又∵ AC是∠OAB的平分线, ∴ ∠CAB = (1/2)∠OAB
由图 ∠OBD = ∠MON + ∠OAB =90° +∠OAB
∴ ∠OBC =(1/2)∠OBD = (1/2) (90° +∠OAB) =45° +(1/2)∠OAB
∴ ∠ABC = ∠OBC + ∠ABO = ∠OBC + 45° +(1/2)∠OAB
∴ ∠ACB = 180°- ∠CAB -∠ABC
= 180° - (1/2)∠OAB - ∠OBC - 45° - (1/2)∠OAB
= 135° - (∠AOB + ∠OBC)
= 135° - 90° = 45°
追问
∠ABC = ∠OBC + ∠ABO = ∠OBC + 45° +(1/2)∠OAB ,这一步是如何转换的?我想了两种方式,一种是∠OBC不变,可是∠ABO和 45° +(1/2)∠OAB=∠OBC,2∠OBC=∠ABC,貌似不靠谱。一种是∠OBC代表后面的 45° +(1/2)∠OAB,可∠ABO和∠OBC又对不上。能帮忙详细说一下怎么转换的吗
?
追答
哦!对不对,对于∠ABC = ∠OBC + ∠ABO = ∠OBC + 45° +(1/2)∠OAB这一步当时打字时打错了,应该是:
∠ABC = ∠ABO +∠OBC
=∠ABO + 45° +(1/2)∠OAB
∴ ∠ACB=180°- ∠CAB -∠ABC
=180° - (1/2)∠OAB-∠ABO - 45° - (1/2)∠OAB
=135°-(1/2)(∠OAB+∠OAB)-∠ABO
=135°-∠OAB -∠ABO
= 135°-(∠OAB+∠ABO)
=135°-90°=45°
实在对不起,给你把符号打错了,让你多走了弯路,请原谅!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询