初三数学
24.(本题满分12分)如图(1),已知直线y=kx与抛物线y=(4/27)x²+22/3交于点A(3,-9).(1)求直线y=kx的解析式是,线段OA的长度是...
24.(本题满分12分)如图(1),已知直线y=kx与抛物线y=(4/27)x²+22/3
交于点A(3,-9).
(1)求直线y=kx的解析式是 ,线段OA的长度是 ;
(2)点P为抛物线第四象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图(2),请你进一步探索:当QM⊥x轴时,设此时M的坐标是(a,0)a小于3更号31除4,其中,在第四象限内,是否存在点H,使得△HON,△HOM和△HMB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点H的坐标;如果不存在,请说明理由.
只要第三小题其中B为抛物线X轴正半轴上交点 展开
交于点A(3,-9).
(1)求直线y=kx的解析式是 ,线段OA的长度是 ;
(2)点P为抛物线第四象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图(2),请你进一步探索:当QM⊥x轴时,设此时M的坐标是(a,0)a小于3更号31除4,其中,在第四象限内,是否存在点H,使得△HON,△HOM和△HMB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点H的坐标;如果不存在,请说明理由.
只要第三小题其中B为抛物线X轴正半轴上交点 展开
展开全部
初三数学知识点
第一章 二次根式
1 二次根式:形如 ( )的式子为二次根式;
性质: ( )是一个非负数;
;
。
2 二次根式的乘除: ;
。
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4 海伦-秦九韶公式: ,S是三角形的面积,p为 。
第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
公式法:
因式分解法:左边是两个因式的乘积,右边为零。
3 一元二次方程在实际问题中的应用
4 韦达定理:设 是方程 的两个根,那么有
第三章 旋转
1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换
性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标
第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义
2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相扒手老等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 d<r
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系
相交 d<r
相切 d=r
相离 d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和春升圆的位置关系
外离 d>R+r
外切 d=R+r
相交 R-r<d<R+r
内切 d=R-r
内含 d<R-r
8 正多边形和圆
正多边形的中心:外接圆的圆薯型心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9 弧长和扇形面积
弧长
扇形面积:
10 圆锥的侧面积和全面积
侧面积:
全面积
11 (附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件A发生的频率 稳定在某个常数p附近,则常数p叫做事件A的概率。
2 用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3 用频率去估计概率
下册
第六章 二次函数
1 二次函数 =
a>0,开口向上;a<0,开口向下;
对称轴: ;
顶点坐标: ;
图像的平移可以参照顶点的平移。
2 用函数观点看一元二次方程
3 二次函数与实际问题
第七章 相似
1 图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2 相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3 相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4 位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
第八章 锐角三角函数
1 锐角三角函数:正弦、余弦、正切;
2 解直角三角形
第九章 投影和视图
1 投影:平行投影、中心投影、正投影
2 三视图:俯视图、主视图、左视图。
3 三视图的画法
满意请采纳。
第一章 二次根式
1 二次根式:形如 ( )的式子为二次根式;
性质: ( )是一个非负数;
;
。
2 二次根式的乘除: ;
。
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4 海伦-秦九韶公式: ,S是三角形的面积,p为 。
第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
公式法:
因式分解法:左边是两个因式的乘积,右边为零。
3 一元二次方程在实际问题中的应用
4 韦达定理:设 是方程 的两个根,那么有
第三章 旋转
1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换
性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标
第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义
2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相扒手老等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 d<r
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系
相交 d<r
相切 d=r
相离 d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和春升圆的位置关系
外离 d>R+r
外切 d=R+r
相交 R-r<d<R+r
内切 d=R-r
内含 d<R-r
8 正多边形和圆
正多边形的中心:外接圆的圆薯型心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9 弧长和扇形面积
弧长
扇形面积:
10 圆锥的侧面积和全面积
侧面积:
全面积
11 (附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件A发生的频率 稳定在某个常数p附近,则常数p叫做事件A的概率。
2 用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3 用频率去估计概率
下册
第六章 二次函数
1 二次函数 =
a>0,开口向上;a<0,开口向下;
对称轴: ;
顶点坐标: ;
图像的平移可以参照顶点的平移。
2 用函数观点看一元二次方程
3 二次函数与实际问题
第七章 相似
1 图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2 相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3 相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4 位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
第八章 锐角三角函数
1 锐角三角函数:正弦、余弦、正切;
2 解直角三角形
第九章 投影和视图
1 投影:平行投影、中心投影、正投影
2 三视图:俯视图、主视图、左视图。
3 三视图的画法
满意请采纳。
展开全部
解颤芦:(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=3倍根号5
(2)QM分之QN是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…
∴QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
当点P、Q在抛物线和直线上不同位置时,同理可得QM分之QN=2.①①
(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=2分之1OA=2分之3根号5
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴OC分之OF=OR分之AO=3分之3倍根号5=根号5
∴OF=2分之3根号5乘以根号5=2分之15
∴点F(2分之15,0),
设点B(x,-4分之27x的平方+3分之22),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴FR分之BK=AR分之AK
即7.5-3分之x-3=6分之6-(-4分之27x的平方+3分之22)
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直丛空线AF为y=kx+b(k≠0)把点A(3,6),点F(2分之15,0)代入得
k=-3分之4,b=10,
∴y=-3分之4x+10
∴{y=-3分之4x+10
{y=-4分之27x的平方+3分之22
∴{x1=3 {x2=6
{y1=6(舍去) {y2=2
∴B(6,2),
∴AB=5…
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.…
设OE=x,则AE=3倍根号5﹣x (0<x<3倍根号5),
由△ABE∽△OED得AB分之AE=OE分之OD
∴5分之3倍根号5-x=x分之π
∴m=5分之1x(3倍根号5-x)=-5分之1x的平方+5分之3根号5(0<x<3倍根号5)
∴顶点为(2分之3根号5,4分之9)
如答图3,当m=4分之9时,OE=x=2分之3根号5,此时E点有1个;
当0<m<4分之9时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当m=4分之9时,E点只有1个…
当0<m<4分之9时,E点有2个…
不懂的可以追问茄郑带哦~ 我写过的 求好评
∵6=3k,
∴k=2,
∴y=2x.
OA=3倍根号5
(2)QM分之QN是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…
∴QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
当点P、Q在抛物线和直线上不同位置时,同理可得QM分之QN=2.①①
(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=2分之1OA=2分之3根号5
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴OC分之OF=OR分之AO=3分之3倍根号5=根号5
∴OF=2分之3根号5乘以根号5=2分之15
∴点F(2分之15,0),
设点B(x,-4分之27x的平方+3分之22),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴FR分之BK=AR分之AK
即7.5-3分之x-3=6分之6-(-4分之27x的平方+3分之22)
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直丛空线AF为y=kx+b(k≠0)把点A(3,6),点F(2分之15,0)代入得
k=-3分之4,b=10,
∴y=-3分之4x+10
∴{y=-3分之4x+10
{y=-4分之27x的平方+3分之22
∴{x1=3 {x2=6
{y1=6(舍去) {y2=2
∴B(6,2),
∴AB=5…
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.…
设OE=x,则AE=3倍根号5﹣x (0<x<3倍根号5),
由△ABE∽△OED得AB分之AE=OE分之OD
∴5分之3倍根号5-x=x分之π
∴m=5分之1x(3倍根号5-x)=-5分之1x的平方+5分之3根号5(0<x<3倍根号5)
∴顶点为(2分之3根号5,4分之9)
如答图3,当m=4分之9时,OE=x=2分之3根号5,此时E点有1个;
当0<m<4分之9时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当m=4分之9时,E点只有1个…
当0<m<4分之9时,E点有2个…
不懂的可以追问茄郑带哦~ 我写过的 求好评
更多追问追答
追问
请看清题目
追答
....貌似不一样额
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询