已知数列{a n }满足a 1 =2,a n+1 =2(1+ 1 n ) 2 ?a n .(1)求证数列{ a n
已知数列{an}满足a1=2,an+1=2(1+1n)2?an.(1)求证数列{ann2}是等比数列,并求其通项公式;(2)设bn=ann,求数列{bn}的前n项和Sn;...
已知数列{a n }满足a 1 =2,a n+1 =2(1+ 1 n ) 2 ?a n .(1)求证数列{ a n n 2 }是等比数列,并求其通项公式;(2)设b n = a n n ,求数列{b n }的前n项和S n ;(3)设C n = n a n ,求证: c 1 + c 2 + c 3 +…+ c n < 7 10 .
展开
加菲7日122
推荐于2016-09-14
·
超过59用户采纳过TA的回答
关注
(1)∵a n+1 =2(1+ ) 2 ?a n , ∴ =2? ∵a 1 =2,∴{ }是以2为首项,2为公比的等比数列 ∴ = 2 n ∴a n =n 2 ?2 n ; (2) b n = =n?2 n ∴S n =1?2 1 +2?2 2 +…+n?2 n ∴2S n =1?2 2 +2?2 3 +…+(n-1)?2 n +n?2 n+1 两式相减可得-S n =2 n+1 -2-n?2 n+1 ∴S n =2+(n-1)?2 n+1 ; (3)证明:c n = = >0, 设T n =c 1 +c 2 +c 3 +…+c n ,则T 1 <T 2 <T 3 <T 4 , 当n≥4时,T n = + +…+ < + + ( +…+ ) = + ? - ?( ) n < + ? < + = 综上:c 1 +c 2 +c 3 +…+c n < |
收起
为你推荐: