如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若直线PB与平面PAD...
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若直线PB与平面PAD所成角的正弦值为64,△ABC中,|AB|=|AC|=72,|BC|=2,求二面角E-AF-C的余弦值.
展开
展开全部
(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.
因为E为BC的中点,所以AE⊥BC.
又因为BC∥AD,所以AE⊥AD.
因为PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.
而PA?平面PAD,AD?平面PAD且PA∩AD=A,所以AE⊥平面PAD.
又PD?平面PAD,所以AE⊥PD.
(Ⅱ)解:由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,
设AB=2,AP=a,则A(0,0,0),B(
,-1,0),C(
,1,0),D(0,2,0),P(0,0,a),E(
,0,0),F(
,
,
)所以
=(
,-1,-a),且
=(
因为E为BC的中点,所以AE⊥BC.
又因为BC∥AD,所以AE⊥AD.
因为PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.
而PA?平面PAD,AD?平面PAD且PA∩AD=A,所以AE⊥平面PAD.
又PD?平面PAD,所以AE⊥PD.
(Ⅱ)解:由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,
设AB=2,AP=a,则A(0,0,0),B(
3 |
3 |
3 |
| ||
2 |
1 |
2 |
a |
2 |
FB |
3 |
AE |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|