已知函数f(π)=1/2cos^2wx+√3/2sinwxcoswx+1,x∈R的f(x)的最小正周期为π(1)求w的值及函数的解析式
(2)求函数在[π/12,π/4]上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值...
(2)求函数在[π/12,π/4]上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值
展开
1个回答
2014-12-28 · 知道合伙人教育行家
关注
展开全部
f(x)=1/2cos^2wx+√3/2sinwxcoswx+1
= 1/4cos2wx + 1/2 + √3/4sin2wx + 1
= 1/2{√3/2sin2wx +1/2cos2wx) + 3/2
= 1/2sin(2wx+π/6) + 3/2
最小正周期 = 2π/(2w)=π
w = 1
f(x) = 1/2sin(2x+π/6) + 3/2
x属于[π/12,π/4]
2x属于[π/6,π/2]
2x+π/6属于[π/3,2π/3]
2x+π/6=π/2时,最大值 = 1/2*1+3/2 = 2
2x+π/6=π/3或2π/3时,最小值 = 1/2*√3/2+3/2 = (6+√3)/4
最大值时,2x+π/6=π/2,x=π/6
最小值时2x+π/6=π/3或2x+π/6=2π/3,x=π/12,或x=π/4
= 1/4cos2wx + 1/2 + √3/4sin2wx + 1
= 1/2{√3/2sin2wx +1/2cos2wx) + 3/2
= 1/2sin(2wx+π/6) + 3/2
最小正周期 = 2π/(2w)=π
w = 1
f(x) = 1/2sin(2x+π/6) + 3/2
x属于[π/12,π/4]
2x属于[π/6,π/2]
2x+π/6属于[π/3,2π/3]
2x+π/6=π/2时,最大值 = 1/2*1+3/2 = 2
2x+π/6=π/3或2π/3时,最小值 = 1/2*√3/2+3/2 = (6+√3)/4
最大值时,2x+π/6=π/2,x=π/6
最小值时2x+π/6=π/3或2x+π/6=2π/3,x=π/12,或x=π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询