设{an}是首项为1的正数项数列,且(n+1)an+12-nan2+an+1an=0(n∈N*),经归纳猜想可得这个数列的通项公

设{an}是首项为1的正数项数列,且(n+1)an+12-nan2+an+1an=0(n∈N*),经归纳猜想可得这个数列的通项公式为______.... 设{an}是首项为1的正数项数列,且(n+1)an+12-nan2+an+1an=0(n∈N*),经归纳猜想可得这个数列的通项公式为______. 展开
 我来答
手机用户23364
推荐于2016-12-01 · 超过73用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:168万
展开全部
∵(n+1)an+12-nan2+an+1an=0,
∴(n+1)an+1=nan或an+1+an=0,
∵{an}是首项为1的正数项数列,
∴(n+1)an+1=nan
∴an+1=
n
n+1
an
an+1
an
=
n
n+1

a2
a1
×
a3
a2
×…×
an
an?1
=
an
a1
=an=
1
2
×
2
3
×…×
n?1
n
=
1
n
(n∈N*
故这个数列的通项公式为an=
1
n
(n∈N*
故答案为:an=
1
n
(n∈N*
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式