已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3
已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交...
已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
展开
展开全部
(1)求导函数可得f′(x)=
+2x-12,
∵x=4是函数f(x)=alnx+x2-12x+11的一个极值点
∴f′(4)=
+8-12=0,∴a=16 …3分
(2)由(1)知,f(x)=16lnx+x2-12x+11,x∈(0,+∞)
f′(x)=
…5分
当x∈(0,2)∪(4,+∞)时,f′(x)>0;当x∈(2,4)时,f′(x)<0…7分
所以f(x)的单调增区间是(0,2),(4,+∞),f(x)的单凋减区间是(2,4)…8分
(3)由(2)知,f(x)的极大值为f(2)=16ln2-9,极小值为f(4)=32ln2-21
因此f(16)=16ln16+162-12×16+11>16ln2-9=f(2),f(e-2)<-32+11=-21<f(4)
所以在f(x)的三个单调区间(0,2),(2,4),(4,+∞)内,直线y=b与y=f(x)的图象各有一个交点,
当且仅当f(4)<b<f(2)成立…13分
因此,b的取值范围为(32ln2-21,16ln2-9). …14分.
a |
x |
∵x=4是函数f(x)=alnx+x2-12x+11的一个极值点
∴f′(4)=
a |
4 |
(2)由(1)知,f(x)=16lnx+x2-12x+11,x∈(0,+∞)
f′(x)=
2(x?2)(x?4) |
x |
当x∈(0,2)∪(4,+∞)时,f′(x)>0;当x∈(2,4)时,f′(x)<0…7分
所以f(x)的单调增区间是(0,2),(4,+∞),f(x)的单凋减区间是(2,4)…8分
(3)由(2)知,f(x)的极大值为f(2)=16ln2-9,极小值为f(4)=32ln2-21
因此f(16)=16ln16+162-12×16+11>16ln2-9=f(2),f(e-2)<-32+11=-21<f(4)
所以在f(x)的三个单调区间(0,2),(2,4),(4,+∞)内,直线y=b与y=f(x)的图象各有一个交点,
当且仅当f(4)<b<f(2)成立…13分
因此,b的取值范围为(32ln2-21,16ln2-9). …14分.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询