在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm, (1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2
在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm,(1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2)求斜边被分成的两部分AD和BD的长。...
在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm, (1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2)求斜边被分成的两部分AD和BD的长。
展开
2个回答
展开全部
已知:
AC = 2.1
BC = 2.8
2.1^2 + 2.8^2 = 12.25
AB = √12.25 = 3.5
设:
x = BD
y = DA
x+y = AB
h = CD
已知:
(3.5-x)^2 + h^2 = 2.8^2
h^2 = 2.8^2 - (3.5-x)^2
(3.5-y)^2 + h^2 = 2.1^2
h^2 = 2.1^2 - (3.5-y)^2
2.8^2 - (3.5-x)^2 = 2.1^2 - (3.5-y)^2
x+y = 3.5
y = 3.5 - x
代入y:
2.8^2 - (3.5-x)^2 = 2.1^2 - (3.5-(3.5 - x))^2
7.84 - (3.5-x)^2 = 4.41 - x^2
7.84 - 4.41 = (3.5-x)^2 - x^2
3.43 = (3.5-x+x)(3.5-x-x)
3.43 = 3.5(3.5-2x)
3.43 = 12.25 - 7x
7x = 12.25 - 3.43
x = 8.82/7
x = 1.26
y = 3.5-1.26 = 2.24
h^2 = 2.8^2 - (3.5-x)^2
h^2 = 7.84 - 5.0176
h = 1.68
h^2 = 2.1^2 - (3.5-y)^2
h^2 = 4.41 - 1.5876
h^2 = 2.8224
h = 1.68
AC = 2.1
BC = 2.8
2.1^2 + 2.8^2 = 12.25
AB = √12.25 = 3.5
设:
x = BD
y = DA
x+y = AB
h = CD
已知:
(3.5-x)^2 + h^2 = 2.8^2
h^2 = 2.8^2 - (3.5-x)^2
(3.5-y)^2 + h^2 = 2.1^2
h^2 = 2.1^2 - (3.5-y)^2
2.8^2 - (3.5-x)^2 = 2.1^2 - (3.5-y)^2
x+y = 3.5
y = 3.5 - x
代入y:
2.8^2 - (3.5-x)^2 = 2.1^2 - (3.5-(3.5 - x))^2
7.84 - (3.5-x)^2 = 4.41 - x^2
7.84 - 4.41 = (3.5-x)^2 - x^2
3.43 = (3.5-x+x)(3.5-x-x)
3.43 = 3.5(3.5-2x)
3.43 = 12.25 - 7x
7x = 12.25 - 3.43
x = 8.82/7
x = 1.26
y = 3.5-1.26 = 2.24
h^2 = 2.8^2 - (3.5-x)^2
h^2 = 7.84 - 5.0176
h = 1.68
h^2 = 2.1^2 - (3.5-y)^2
h^2 = 4.41 - 1.5876
h^2 = 2.8224
h = 1.68
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询