如图,已知∠MON=40°,P是∠MON中的一定点,点A、B分别在射线OM、ON上移动,当△PAB周长最小时,求∠APB

如图,已知∠MON=40°,P是∠MON中的一定点,点A、B分别在射线OM、ON上移动,当△PAB周长最小时,求∠APB的度数.... 如图,已知∠MON=40°,P是∠MON中的一定点,点A、B分别在射线OM、ON上移动,当△PAB周长最小时,求∠APB的度数. 展开
 我来答
20160510
推荐于2019-04-03 · TA获得超过101个赞
知道答主
回答量:102
采纳率:0%
帮助的人:122万
展开全部
如图所示:

分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,
连接PA、PB,此时△PAB周长的最小值等于P′P″.
如图所示:由轴对称性质可得,
OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,
所以∠P′OP″=2∠MON=2×40°=80°,
所以∠OP′P″=∠OP″P′=(180°-80°)÷2=50°,
又因为∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,
所以∠APB=∠APO+∠BPO=100°.
答:∠APB的度数为100°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式