如图,已知Rt△ABC内接于⊙O,AC为⊙O的直径,EA平分∠BAC交⊙O于点E,过E作⊙O的切线交AB的延长线于点F

如图,已知Rt△ABC内接于⊙O,AC为⊙O的直径,EA平分∠BAC交⊙O于点E,过E作⊙O的切线交AB的延长线于点F,交AC的延长线于点G,AE、BC交于点D.(1)求... 如图,已知Rt△ABC内接于⊙O,AC为⊙O的直径,EA平分∠BAC交⊙O于点E,过E作⊙O的切线交AB的延长线于点F,交AC的延长线于点G,AE、BC交于点D.(1)求证:EF∥BC;(2)若tan∠G=34,EF=4,求DE的长. 展开
 我来答
手机用户99212
推荐于2016-06-09 · 超过44用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:144万
展开全部
(1)证明:连接OE交BC于M,
∵EF是圆的切线,
∴∠OEF=90°,
∵EA平分∠BAC交⊙O于点E,
∴∠FAE=∠EAO,
∵OA=OE,
∴∠OAE=∠OEA,
∴∠FAE=∠AEO,
∴AF∥OE,
∵AC为⊙O的直径,
∴∠ABC=90°,
∴∠ABC=∠OMB=90°,
∴∠OEF=∠OMB=90°,
∴EF∥BC;

(2)连接OB,
∵BC∥EF,
∴∠AFE=∠ABC=90°,
∵EF是切线,
∴∠MEF=90°,
四边形BFEM是矩形,
∴FE=BM=4,
∴BC=8,
∵tan∠G=
3
4

∴tan∠ABC=
3
4

∵AB=6,∴AC=10,
∴OB=5,∴OM=3,
∴EM=2,
∵AF=AB+BF=8,
∴tan∠FAE=
1
2

∴tan∠FAE=tan∠DEM=
1
2

∵EM=2,
∴DM=1,
∴DE=
22+12
=
5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式