定积分怎么算

 我来答
老衲今年还年轻
推荐于2019-09-03 · TA获得超过7572个赞
知道答主
回答量:70
采纳率:0%
帮助的人:1.9万
展开全部

计算定积分常用的方法:

  1. 换元法

(1)  

(2)x=ψ(t)在[α,β]上单值、可导

(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b

则 

2.分部积分法

设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式

拓展资料:

定积分的数学定义:如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n 个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n) ,作和式f(r1)+...+f(rn) ,当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x) 在区间上的定积计做/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 这里,a 与 b叫做积分下限与积分上限,区间[a,b] 叫做积分区间,函数f(x) 叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式。

几何定义:可以理解为在 Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值。(一种确定的实数值)

百度网友d08ced5
高粉答主

2018-11-04 · 关注我不会让你失望
知道小有建树答主
回答量:149
采纳率:100%
帮助的人:3.9万
展开全部

定积分的算法有两种:

换元积分法

如果  ;x=ψ(t)在[α,β]上单值、可导;当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,

分部积分法

设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:

扩展资料

定积分的性质:

1、当a=b时,

2、当a>b时, 

3、常数可以提到积分号前。

4、代数和的积分等于积分的代数和。

5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有

又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。

6、如果在区间[a,b]上,f(x)≥0,则

7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
邰明雨as
高粉答主

2019-10-16 · 繁杂信息太多,你要学会辨别
知道答主
回答量:13.1万
采纳率:7%
帮助的人:6314万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱喝粥a

2019-12-24 · TA获得超过15.7万个赞
知道顶级答主
回答量:17.5万
采纳率:95%
帮助的人:7991万
展开全部
答案是 4
所谓用定义法就是利用曲边梯形面积求解,这也是定积分的引例。即曲线与x=a,x=b围城的图形面积S就是该函数在[a,b]的积分。
具体步骤
第一,分割。就是将积分图形分成n个曲边梯形。
将【0,4】n等份,分点为4i/n(i=1,2...n)。第i个曲边梯形的面积为 f(4i/n)*(4/n)=32i/n^2-12/n。
第二,求和。
n个曲边梯形的面积为 Sn=S1+S2+...Sn=W(i=1,n)[32i/n^2-12/n]=16+16/n-12 。{注:W(i=1,n)表示求和符号 i从1到n,没有编辑器打不出来}
第三,求极限。因为所求的面积s就是Sn的极限值。即,当分割的曲边梯形边长4/n越小,数量n越多,Sn就越接近S的面积。
S=lim(n->无穷)=16+0-12=4 这就是所求函数在0到4的定积分。
总结:定积分的定义关键是抓住其几何意义,也就是面积问题。因此,这道题,也可以直接用几何方法得到,就是直接做出函数2x-3的图形。算出其与x=0,x=4围成的图形面积,用在x轴上方图形的面积减去下方的就可以了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Applebaby19
2015-01-21 · 超过16用户采纳过TA的回答
知道答主
回答量:67
采纳率:0%
帮助的人:24.4万
展开全部
定积分是在不定积分的前提下,把上下限带入求得的数值。集体如何算,没办法笼统讲。积分是导数的逆运算。要记公式,带公式。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式