如何分析Android的Log

 我来答
huanglenzhi
2015-02-02 · 知道合伙人数码行家
huanglenzhi
知道合伙人数码行家
采纳数:117538 获赞数:517181
长期从事计算机组装,维护,网络组建及管理。对计算机硬件、操作系统安装、典型网络设备具有详细认知。

向TA提问 私信TA
展开全部
  首先,让我们看一看AndroidLog的格式。下面这段log是以所谓的long格式打印出来的。从前面Logcat的介绍中可以知道,long格式会把时间,标签等作为单独的一行显示。

  [ 12-09 21:39:35.510 396: 416 I/ActivityManager ]

  Start procnet.coollet.infzmreader:umengService_v1 for service
  net.coollet.infzmreader/com.umeng.message.

  UmengService:pid=21745 uid=10039 gids={50039, 3003, 1015,1028}

  [ 12-09 21:39:35.518 21745:21745I/dalvikvm ]

  Turning on JNI app bug workarounds fortarget SDK version 8...

  [ 12-09 21:39:35.611 21745:21745D/AgooService ]

  onCreate()

  我们以第一行为例:12-09 是日期,21:39:35.510是时间396是进程号,416是线程号;I代表log优先级,ActivityManager是log标签。

  在应用开发中,这些信息的作用可能不是很大。但是在系统开发中,这些都是很重要的辅助信息。开发工程师分析的log很多都是由测试工程师抓取的,所以可能有些log根本就不是当时出错的log。如果出现这种情况,无论你怎么分析都不太可能得出正确的结论。如何能最大限度的避免这种情况呢?笔者就要求测试工程师报bug时必须填上bug发生的时间。这样结合log里的时间戳信息就能大致判断是否是发生错误时的log。而且根据测试工程师提供的bug发生时间点,开发工程师可以在长长的log信息中快速的定位错误的位置,缩小分析的范围。

  同时我们也要注意,时间信息在log分析中可能被错误的使用。例如:在分析多线程相关的问题时,我们有时需要根据两段不同线程中log语句执行的先后顺序来判断错误发生的原因,但是我们不能以两段log在log文件中出现的先后做为判断的条件,这是因为在小段时间内两个线程输出log的先后是随机的,log打印的先后顺序并不完全等同于执行的顺序。那么我们是否能以log的时间戳来判断呢?同样是不可以,因为这个时间戳实际上是系统打印输出log时的时间,并不是调用log函数时的时间。遇到这种情况唯一的办法是在输出log前,调用系统时间函数获取当时时间,然后再通过log信息打印输出。这样虽然麻烦一点,但是只有这样取得的时间才是可靠的,才能做为我们判断的依据。

  另外一种误用log中时间戳的情况是用它来分析程序的性能。一个有多年工作经验的工程师拿着他的性能分析结果给笔者看,但是笔者对这份和实际情况相差很远的报告表示怀疑,于是询问这位工程师是如何得出结论的。他的回答让笔者很惊讶,他计算所采用的数据就是log信息前面的时间戳。前面我们已经讲过,log前面时间戳和调用log函数的时间并不相同,这是由于系统缓冲log信息引起的,而且这两个时间的时间差并不固定。所以用log信息前附带的时间戳来计算两段log间代码的性能会有比较大的误差。正确的方法还是上面提到的:在程序中获取系统时间然后打印输出,利用我们打印的时间来计算所花费的时间。

  了解了时间,我们再谈谈进程Id和线程Id,它们也是分析log时很重要的依据。我们看到的log文件,不同进程的log信息实际上是混杂在一起输出的,这给我们分析log带来了很大的麻烦。有时即使是一个函数内的两条相邻的log,也会出现不同进程的log交替输出的情况,也就是A进程的第一条log后面跟着的是B进程的第二条log,对于这样的组合如果不细心分析,就很容易得出错误的结论。这时一定要仔细看log前面的进程Id,把相同Id的log放到一起看。

  不同进程的log有这样的问题,不同的线程输出的log当然也存在着相同的问题。Logcat加上-vthread就能打印出线程Id。但是有一点也要引起注意,就是Android的线程Id和我们平时所讲的Linux线程Id并不完全等同。首先,在Android系统中,C++层使用的Linux获取线程Id的函数gettid()是不能得到线程Id的,调用gettid()实际上返回的是进程Id。作为替代,我们可以调用pthread_self()得到一个唯一的值来标示当前的native线程。Android也提供了一个函数androidGetThreaId()来获取线程Id,这个函数实际上就是在调用pthread_self函数。但是在Java层线程Id又是另外一个值,Java层的线程Id是通过调用Thread的getId方法得到的,这个方法的返回值实际上来自Android在每个进程的java层中维护的一个全局变量,所以这个值和C++层所获得的值并不相同。这也是我们分析log时要注意的问题,如果是Java层线程Id,一般值会比较小,几百左右;如果是C++层的线程,值会比较大。在前里面的log样本中,就能很容易的看出,第一条log是Jave层输出的log,第二条是native层输出的。明白了这些,我们在分析log时就不要看见两段log前面的线程Id不相同就得出是两个不同线程log的简单结论,还要注意Jave层和native层的区别,这样才能防止被误导。

  AndroidLog的优先级在打印输出时会被转换成V,I,D,W,E等简单的字符标记。在做系统log分析时,我们很难把一个log文件从头看到尾,都是利用搜索工具来查找出错的标记。比如搜索“E/”来看看有没有指示错误的log。所以如果参与系统开发的每个工程师都能遵守Android定义的优先级含义来输出log,这会让我们繁重的log分析工作变得相对轻松些。

  Android比较常见的严重问题有两大类,一是程序发生崩溃;二是产生了ANR。程序崩溃和ANR既可能发生在java层,也可能发生在native层。如果问题发生在java层,出错的原因一般比较容易定位。如果是native层的问题,在很多情况下,解决问题就不是那么的容易了。我们先看一个java层的崩溃例子:

  I/ActivityManager( 396): Start proccom.test.crash for activity com.test.crash/.MainActivity:
  pid=1760 uid=10065 gids={50065, 1028}

  D/AndroidRuntime( 1760): Shutting downVM

  W/dalvikvm( 1760): threadid=1: threadexiting with uncaught exception(group=0x40c38930)

  E/AndroidRuntime( 1760): FATALEXCEPTION: main

  E/AndroidRuntime( 1760):java.lang.RuntimeException: Unable to start activityComponentInfo
  {com.test.crash/com.test.crash.MainActivity}:java.lang.NullPointerException

  E/AndroidRuntime( 1760): atandroid.app.ActivityThread.performLaunchActivity(ActivityThread.java:2180)

  E/AndroidRuntime( 1760): atandroid.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2230)

  E/AndroidRuntime( 1760): atandroid.app.ActivityThread.access$600(ActivityThread.java:141)

  E/AndroidRuntime( 1760): atandroid.app.ActivityThread$H.handleMessage(ActivityThread.java:1234)

  E/AndroidRuntime( 1760): atandroid.os.Handler.dispatchMessage(Handler.java:99)

  E/AndroidRuntime( 1760): atandroid.os.Looper.loop(Looper.java:137)

  E/AndroidRuntime( 1760): atandroid.app.ActivityThread.main(ActivityThread.java:5050)

  E/AndroidRuntime( 1760): atjava.lang.reflect.Method.invokeNative(NativeMethod)

  E/AndroidRuntime( 1760): atjava.lang.reflect.Method.invoke(Method.java:511)

  E/AndroidRuntime( 1760): atcom.android.internal.os.ZygoteInit$MethodAndArgsCaller.run
  (ZygoteInit.java:793)

  E/AndroidRuntime( 1760): atcom.android.internal.os.ZygoteInit.main(ZygoteInit.java:560)

  E/AndroidRuntime( 1760): atdalvik.system.NativeStart.main(NativeMethod)

  E/AndroidRuntime( 1760): Caused by:java.lang.NullPointerException

  E/AndroidRuntime( 1760): atcom.test.crash.MainActivity.setViewText(MainActivity.java:29)

  E/AndroidRuntime( 1760): atcom.test.crash.MainActivity.onCreate(MainActivity.java:17)

  E/AndroidRuntime( 1760): atandroid.app.Activity.performCreate(Activity.java:5104)

  E/AndroidRuntime( 1760): atandroid.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1080)

  E/AndroidRuntime( 1760): atandroid.app.ActivityThread.performLaunchActivity(ActivityThread.java:2144)

  E/AndroidRuntime( 1760): ... 11more

  I/Process ( 1760): Sending signal.PID: 1760 SIG: 9

  W/ActivityManager( 396): Force finishing activitycom.test.crash/.MainActivity

  Jave层的代码发生crash问题时,系统往往会打印出很详细的出错信息。比如上面这个例子,不但给出了出错的原因,还有出错的文件和行数。根据这些信息,我们会很容易的定位问题所在。native层的crash虽然也有栈log信息输出,但是就不那么容易看懂了。下面我们再看一个native层crash的例子:

  F/libc ( 2102): Fatal signal 11 (SIGSEGV) at 0x00000000 (code=1), thread2102 (testapp)

  D/dalvikvm(26630):GC_FOR_ALLOC freed 604K, 11% free 11980K/13368K, paused 36ms, total36ms

  I/dalvikvm-heap(26630):Grow heap (frag case) to 11.831MB for 102416-byteallocation

  D/dalvikvm(26630):GC_FOR_ALLOC freed 1K, 11% free 12078K/13472K, paused 34ms, total34ms

  I/DEBUG ( 127):*** *** *** *** *** *** *** *** *** *** *** *** *** *** ******

  I/DEBUG ( 127):Build fingerprint:
  'Android/full_maguro/maguro:4.2.2/JDQ39/eng.liuchao.20130619.201255:userdebug/test-keys'

  I/DEBUG ( 127):Revision: '9'

  I/DEBUG ( 127):pid: 2102, tid: 2102, name: testapp >>>./testapp <<<

  I/DEBUG ( 127):signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr00000000

  I/DEBUG ( 127): r0 00000020 r173696874 r2 400ff520 r300000000

  I/DEBUG ( 127): r4 400ff469 r5beb4ab24 r6 00000001 r7beb4ab2c

  I/DEBUG ( 127): r8 00000000 r900000000 sl 00000000 fpbeb4ab1c

  I/DEBUG ( 127): ip 4009b5dc spbeb4aae8 lr 400ff46f pc400ff45e cpsr 60000030

  I/DEBUG ( 127): d0 000000004108dae8 d1 4108ced84108cec8

  I/DEBUG ( 127): d2 4108cef84108cee8 d3 4108cf184108cf08

  I/DEBUG ( 127): d4 4108c5a84108c598 d5 4108ca084108c5b8

  I/DEBUG ( 127): d6 4108ce684108ce58 d7 4108ce884108ce78

  I/DEBUG ( 127): d8 0000000000000000 d9 0000000000000000

  I/DEBUG ( 127): d10 0000000000000000 d110000000000000000

  I/DEBUG ( 127): d120000000000000000 d130000000000000000

  I/DEBUG ( 127): d14 0000000000000000 d150000000000000000

  I/DEBUG ( 127): d16 c1dcf7c087fec8b4 d173f50624dd2f1a9fc

  I/DEBUG ( 127): d18 41c7b1ac89800000 d190000000000000000

  I/DEBUG ( 127): d20 0000000000000000 d210000000000000000

  I/DEBUG ( 127): d22 0000000000000000 d230000000000000000

  I/DEBUG ( 127): d24 0000000000000000 d250000000000000000

  I/DEBUG ( 127): d26 0000000000000000 d270000000000000000

  I/DEBUG ( 127): d28 0000000000000000 d290000000000000000

  I/DEBUG ( 127): d30 0000000000000000 d310000000000000000

  I/DEBUG ( 127): scr 00000010

  I/DEBUG ( 127):

  I/DEBUG ( 127):backtrace:

  I/DEBUG ( 127): #00 pc0000045e /system/bin/testapp

  I/DEBUG ( 127): #01 pc0000046b /system/bin/testapp

  I/DEBUG ( 127): #02 pc0001271f /system/lib/libc.so (__libc_init+38)

  I/DEBUG ( 127): #03 pc00000400 /system/bin/testapp

  I/DEBUG ( 127):

  I/DEBUG ( 127):stack:

  I/DEBUG ( 127): beb4aaa8 000000c8

  I/DEBUG ( 127): beb4aaac 00000000

  I/DEBUG ( 127): beb4aab0 00000000

  I/DEBUG ( 127): beb4aab4 401cbee0 /system/bin/linker

  I/DEBUG ( 127): beb4aab8 00001000

  I/DEBUG ( 127): beb4aabc 4020191d /system/lib/libc.so (__libc_fini)

  I/DEBUG ( 127): beb4aac0 4020191d /system/lib/libc.so (__libc_fini)

  I/DEBUG ( 127): beb4aac4 40100eac /system/bin/testapp

  I/DEBUG ( 127): beb4aac8 00000000

  I/DEBUG ( 127): beb4aacc 400ff469 /system/bin/testapp

  I/DEBUG ( 127): beb4aad0 beb4ab24 [stack]

  I/DEBUG ( 127): beb4aad4 00000001

  I/DEBUG ( 127): beb4aad8 beb4ab2c [stack]

  I/DEBUG ( 127): beb4aadc 00000000

  I/DEBUG ( 127): beb4aae0 df0027ad

  I/DEBUG ( 127): beb4aae4 00000000

  I/DEBUG ( 127): #00 beb4aae8 00000000

  I/DEBUG ( 127): ........ ........

  I/DEBUG ( 127): #01 beb4aae8 00000000

  I/DEBUG ( 127): beb4aaec 401e9721 /system/lib/libc.so (__libc_init+40)

  I/DEBUG ( 127): #02 beb4aaf0 beb4ab08 [stack]

  I/DEBUG ( 127): beb4aaf4 00000000

  I/DEBUG ( 127): beb4aaf8 00000000

  I/DEBUG ( 127): beb4aafc 00000000

  I/DEBUG ( 127): beb4ab00 00000000

  I/DEBUG ( 127): beb4ab04 400ff404 /system/bin/testapp

  I/DEBUG ( 127):

  这个log就不那么容易懂了,但是还是能从中看出很多信息,让我们一起来学习如何分析这种log。首先看下面这行:

  pid: 2102, tid: 2102,name: testapp >>>./testapp <<<

  从这一行我们可以知道crash进程的pid和tid,前文我们已经提到过,Android调用gettid函数得到的实际是进程Id号,所以这里的pid和tid相同。知道进程号后我们可以往前翻翻log,看看该进程最后一次打印的log是什么,这样能缩小一点范围。

  接下来内容是进程名和启动参数。再接下来的一行比较重要了,它告诉了我们从系统角度看,出错的原因:

  signal 11 (SIGSEGV), code 1(SEGV_MAPERR), fault addr 00000000

  signal11是Linux定义的信号之一,含义是Invalidmemory reference,无效的内存引用。加上后面的“faultaddr 00000000”我们基本可以判定这是一个空指针导致的crash。当然这是笔者为了讲解而特地制造的一个Crash的例子,比较容易判断,大部分实际的例子可能就没有那么容易了。

  再接下来的log打印出了cpu的所有寄存器的信息和堆栈的信息,这里面最重要的是从堆栈中得到的backtrace信息:

  I/DEBUG ( 127):backtrace:

  I/DEBUG ( 127): #00 pc0000045e /system/bin/testapp

  I/DEBUG ( 127): #01 pc0000046b /system/bin/testapp

  I/DEBUG ( 127): #02 pc0001271f /system/lib/libc.so (__libc_init+38)

  I/DEBUG ( 127): #03 pc00000400 /system/bin/testapp

  因为实际的运行系统里没有符号信息,所以打印出的log里看不出文件名和行数。这就需要我们借助编译时留下的符号信息表来翻译了。Android提供了一个工具可以来做这种翻译工作:arm-eabi-addr2line,位于prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/bin目录下。用法很简单:

  #./arm-eabi-addr2line -f -eout/target/product/hammerhead/symbols/system/bin/testapp0x0000045e

  参数-f表示打印函数名;参数-e表示带符号表的模块路径;最后是要转换的地址。这条命令在笔者的编译环境中得到的结果是:

  memcpy /home/rd/compile/android-4.4_r1.2/bionic/libc/include/string.h:108

  剩余三个地址翻译如下:

  main /home/rd/compile/android-4.4_r1.2/packages/apps/testapp/app_main.cpp:38

  out_vformat /home/rd/compile/android-4.4_r1.2/bionic/libc/bionic/libc_logging.cpp:361

  _start libgcc2.c:0

  利用这些信息我们很快就能定位问题了。不过这样手动一条一条的翻译比较麻烦,笔者使用的是从网上找到的一个脚本,可以一次翻译所有的行,有需要的读者可以在网上找一找。

  转载
ZESTRON
2024-09-04 广告
在Dr. O.K. Wack Chemie GmbH,我们高度重视ZESTRON的表界面分析技术。该技术通过深入研究材料表面与界面的性质,为提升产品质量与可靠性提供了有力支持。ZESTRON的表界面分析不仅涵盖了相变化、化学反应、吸附与解吸... 点击进入详情页
本回答由ZESTRON提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式