如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD
如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是()A.3...
如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是( )A.3B.4C.5D.6
展开
1个回答
展开全部
解:在平行四边形PCQD中,设对角线PQ与DC相交于点O,
则O是DC的中点,
过点Q作QH⊥BC,交BC的延长线于H,
∵AD∥BC,
∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH,
∵PD∥CQ,
∴∠PDC=∠DCQ,
∴∠ADP=∠QCH,
又∵PD=CQ,
在Rt△ADP与Rt△HCQ中,
∴Rt△ADP≌Rt△HCQ(AAS),
∴AD=HC,
∵AD=1,BC=3,
∴BH=4,
∴当PQ⊥AB时,PQ的长最小,即为4.
故选B.
则O是DC的中点,
过点Q作QH⊥BC,交BC的延长线于H,
∵AD∥BC,
∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH,
∵PD∥CQ,
∴∠PDC=∠DCQ,
∴∠ADP=∠QCH,
又∵PD=CQ,
在Rt△ADP与Rt△HCQ中,
|
∴Rt△ADP≌Rt△HCQ(AAS),
∴AD=HC,
∵AD=1,BC=3,
∴BH=4,
∴当PQ⊥AB时,PQ的长最小,即为4.
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询