对任意n阶方阵A,证明:A+AT为对称矩阵,A-AT为反对称矩阵,且A可以表示成一个对称矩阵与一个反对称矩阵
对任意n阶方阵A,证明:A+AT为对称矩阵,A-AT为反对称矩阵,且A可以表示成一个对称矩阵与一个反对称矩阵的和....
对任意n阶方阵A,证明:A+AT为对称矩阵,A-AT为反对称矩阵,且A可以表示成一个对称矩阵与一个反对称矩阵的和.
展开
2个回答
展开全部
对称矩阵中的元素关于主对角线对称,故只要存储矩阵中上三角或下三角中的元素,让每两个对称的元素共享一个存储空间。按行优先顺序存储主对角线(包括对角线)以下的元素
即按
次序存放在一个向量sa[0...n(n+1)/2-1]中(下三角矩阵中,元素总数为n(n+1)/2)。
其中:
sa[0]=a0,0
sa[1]=a1,0
……
sa[n(n+1)/2-1]=an-1,n-1
扩展资料
在线性代数中,对称矩阵是其转置矩阵等于自身的平方矩阵。1855,C. Hermite(1822-191年)证明了其他数学家发现的一些矩阵类的一些特征值的特殊性质,如矩阵矩阵的特征根性质。
随后,clebsch(1831-1872)和a.buchheim证明了对称矩阵的特征值性质。H. Taber介绍了矩阵迹的概念,并给出了一些相关结论。
参考资料来源:百度百科-对称矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询