为什么(A的转置乘以A)的秩=A的秩

霂棪爱娱乐
高能答主

2021-08-23 · 用力答题,不用力生活
知道大有可为答主
回答量:6736
采纳率:99%
帮助的人:114万
展开全部

证明:

用A'表示A的转置,假设AX=0,r(A'A)=r(A),两边同时乘以A',可得等式A'AX=0,可得方程组AX=0的解都是方程组A'AX=0的解。

假设A'AX=0,两边同时乘以X',可得等式X'A'AX=0,即(AX)'AX=0,令Y=AX,则Y'Y=0,注意Y=AX为n维列向量,因此可设Y=(y1,y2,yn)',则可得Y'Y=y1^2+...+yn^2=0。

因此y1=yn=0,即Y=AX=0,这说明方程组A'AX=0的解都是方程组AX=0的解。

因为AX=0和A'AX=0同解,所以可得r(A'A)=r(A),即A的转置乘以A)的秩=A的秩。

矩阵性质:

矩阵的转置是矩阵的一种运算,在矩阵的所有运算法则中占有重要地位。矩阵的转置和加减乘除一样,也是一种运算。

将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。一个矩阵M, 把它的第一行变成第一列,第二行变成第二列,最末一行变为最末一列, 从而可得到一个新的矩阵N。

帐号已注销
2021-08-25 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:169万
展开全部

证明:

用A'表示A的转置,假设AX=0,r(A'A)=r(A),两边同时乘以A',可得等式A'AX=0,可得方程组AX=0的解都是方程组A'AX=0的解。

假设A'AX=0,两边同时乘以X',可得等式X'A'AX=0,即(AX)'AX=0,令Y=AX,则Y'Y=0,注意Y=AX为n维列向量,因此可设Y=(y1,y2,yn)',则可得Y'Y=y1^2+...+yn^2=0。

因此y1=yn=0,即Y=AX=0,这说明方程组A'AX=0的解都是方程组AX=0的解。

矩阵的秩

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一笑而过jLNJ1
高粉答主

2014-11-28 · 每个回答都超有意思的
知道大有可为答主
回答量:1.4万
采纳率:77%
帮助的人:7886万
展开全部
用A'表示A的转置,要证明r(A'A)=r(A),只需证明方程组AX=0和A'AX=0同解。如果AX=0,两边分别左乘A',得A'AX=0,这说明方程组AX=0的解都是方程组A'AX=0的解;另一方面,如果A'AX=0,两边分别左乘X',得X'A'AX=0,即(AX)'AX=0,令Y=AX,则Y'Y=0,注意Y=AX为n维列向量,因此可设Y=(y1,y2,,,yn)',则Y'Y=y1^2+...+yn^2=0,因此y1=...yn=0,即Y=AX=0,这说明方程组A'AX=0的解都是方程组AX=0的解,综上我们证明了AX=0和A'AX=0同解,因此r(A'A)=r(A)。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式