正四棱锥P-ABCD的底面边长是2,侧棱长是6,且它的五个顶点都在同一个球面上,则此球的半径是92π92π

正四棱锥P-ABCD的底面边长是2,侧棱长是6,且它的五个顶点都在同一个球面上,则此球的半径是92π92π.... 正四棱锥P-ABCD的底面边长是2,侧棱长是6,且它的五个顶点都在同一个球面上,则此球的半径是92π92π. 展开
 我来答
小传君1246
推荐于2016-06-30 · TA获得超过136个赞
知道答主
回答量:109
采纳率:0%
帮助的人:143万
展开全部
如图所示,设球半径为R,底面中心为O'且球心为O,
∵正四棱锥P-ABCD中AB=2,PA=
6

∴AO'=
2
2
AB=
2
,可得PO'=
PA2?AO2
=2,OO'=PO'-PO=2-R.
∵在Rt△AOO'中,AO2=AO'2+OO'2
∴R2=(
2
2+(2-R)2,解之得R=
3
2

因此可得外接球的体积V=
4
3
πR3=
4
3
π?(
3
2
)3
=
9
2
π.
故答案为:
9
2
π.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式