(a-b)(a+b)=______(a-b)(a2+ab+b2)=______(a-b)______=a4-b4(a-b)______=an-bn
(a-b)(a+b)=______(a-b)(a2+ab+b2)=______(a-b)______=a4-b4(a-b)______=an-bn....
(a-b)(a+b)=______(a-b)(a2+ab+b2)=______(a-b)______=a4-b4(a-b)______=an-bn.
展开
1个回答
展开全部
∵由平方差公式得:(a-b)(a+b)=a2-b2;
由立方差公式得:(a-b)(a2+ab+b2)=a3-b3;
∴(a-b)(a+b)(a2+b2)=(a2-b2)(a2+b2)=a4-b4
(a-b)(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1)=a(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1)-b(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1)=an-bn
故答案为:a2-b2 a3-b3 )(a+b)(a2+b2),(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1).
由立方差公式得:(a-b)(a2+ab+b2)=a3-b3;
∴(a-b)(a+b)(a2+b2)=(a2-b2)(a2+b2)=a4-b4
(a-b)(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1)=a(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1)-b(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1)=an-bn
故答案为:a2-b2 a3-b3 )(a+b)(a2+b2),(an-1+an-2b+an-3b2+…+a2bn-3+abn-2+bn-1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询