定积分与微积分分别是用来干什么的?
1个回答
推荐于2017-11-29
展开全部
微积分包括微分和积分,微分和积分的运算正好相反,二者互为逆运算。
积分又包括定积分和不定积分。
定积分是指有固定的积分区间,它的积分值是确定的。
不定积分没有固定的积分区间,它的积分值是不确定的。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
不定积分(Indefinite integral)
即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无
限多个原函数。
积分又包括定积分和不定积分。
定积分是指有固定的积分区间,它的积分值是确定的。
不定积分没有固定的积分区间,它的积分值是不确定的。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
不定积分(Indefinite integral)
即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无
限多个原函数。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询