三角函数中:tan ,sin,cos,cot各表示什么意思
如图比如以角A为例
sinA=对边:斜边=BC:AC
cosA=临边:斜边=AB:AC
tanA=对边:临边=BC:AB
cotA=临边:对边=AB:BC
tan ,sin,cos,cot之间的关系:
倒数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商数关系
tanα=sinα/cosα
cotα=cosα/sinα
平方关系
sinα²+cosα²=1
1+tanα²=secα²
1+cotα²=cscα²
以下关系,函数名不变,符号看象限
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
以下关系,奇变偶不变,符号看象限
sin(90°-α)=cosα
cos(90°-α)=sinα
tan(90°-α)=cotα
cot(90°-α)=tanα
sin(90°+α)=cosα
cos(90°+α)=sinα
tan(90°+α)=-cotα
cot(90°+α)=-tanα
sin(270°-α)=-cosα
cos(270°-α)=-sinα
tan(270°-α)=cotα
cot(270°-α)=tanα
sin(270°+α)=-cosα
cos(270°+α)=sinα
tan(270°+α)=-cotα
cot(270°+α)=-tanα
积化和差公式
sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]
cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]
cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]
sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)]
和差化积公式
sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2]
sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]
cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2]
cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2]
三倍角公式
sin3α=3sinα-4sinα³
cos3α=4cosα³-3cosα
两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)==(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ)
谢谢!
2015-05-11
正弦=对边/斜边
余弦=邻边/斜边
正切=对边/邻边
余切=邻边/对边
sin30°=cos60°=1/2
cos30°=sin60°=√3/2
cos45°=sin45°=√2/2
在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:
sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a ,secA=c/b,cscA=c/a,
正切函数、余切函数曾被写作tg、ctg,现已不用这种写法。
三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数sec、余割函数csc、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
谢谢!
广告 您可能关注的内容 |