为什么齐次线性方程组的系数行列式d不等于0则它只有零解
根据克莱姆法则,系数行列式d不等于0线性方程组只有唯一解。而齐次线性方程组必有零解,所以它只有零解。
在一个线性代数方程中,如果其常数项(即不含有未知数的项)为零,就称为齐次线性方程.
在代数方程,如y =2 x +7,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线。
常数项全部为零的线性方程组。如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。
扩展资料:
对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。
对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。
参考资料来源:百度百科——齐次线性方程组
然后行列式与齐次线性方程组的解之间的关系可以由克莱姆法则来体现:当线性方程组的系数矩阵的行列式(这里既为齐次线性方程组的系数矩阵的行列式)的值不为0时,该方程组有唯一解。那么对应上面的来看,对于齐次线性方程组来讲,如果是只有唯一解的情况的话,那么只有解等于0才能满足唯一解的条件,所以在齐次线性方程组的系数矩阵的行列式不等于0时该齐次线性方程组只有零解咯。
补充一下:用克莱姆法则有个前提,n个n元的线性方程组,既该线性方程组的系数矩阵必须是方阵。
可知:1,若为非齐次线性方程组,D不等于0,则X1、X2、...Xn有解且只有惟一解;
2,若为齐次线性方程组,D不等于0,而此时D1、D2、...Dn的计算值均等于0(如二阶行列式D1=b1a22-b2a12、D2=a11b2-a21b1均为0),所以X1、X2、...Xn均等于0;