讨论级数∑㏑【1+(-1)∧n/n∧p】的绝对收敛性和条件收敛性
推荐于2017-09-28
展开全部
如果级数的通项乘以-1,则成为正项级数. 所以以下考虑级数
∑[√(n+1)-√n]^p×ln[(n+1)/(n-1)]
ln[(n+1)/(n-1)]=ln[1+2/(n-1)]等价于2/(n-1),进而等价于2/n
[√(n+1)-√n]^p=1/[√(n+1)+√n]^p等价于1/[2√n]^p
所以,[√(n+1)-√n]^p×ln[(n+1)/(n-1)]等价于2/n×/[2√n]^p
由比较判别法,原级数的收敛性与级数∑1/[n×√n^p]=∑1/[n^(1+p/2)]的收敛性相同
所以,当1+p/2>1,即p>0时,原级数收敛,当p≤0时,原级数发散
∑[√(n+1)-√n]^p×ln[(n+1)/(n-1)]
ln[(n+1)/(n-1)]=ln[1+2/(n-1)]等价于2/(n-1),进而等价于2/n
[√(n+1)-√n]^p=1/[√(n+1)+√n]^p等价于1/[2√n]^p
所以,[√(n+1)-√n]^p×ln[(n+1)/(n-1)]等价于2/n×/[2√n]^p
由比较判别法,原级数的收敛性与级数∑1/[n×√n^p]=∑1/[n^(1+p/2)]的收敛性相同
所以,当1+p/2>1,即p>0时,原级数收敛,当p≤0时,原级数发散
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用比较判别法的极限形式,这个和
∑(-1)∧n/n∧p 同敛散?
∑(-1)∧n/n∧p 同敛散?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |