sinx/x 在x趋近于无穷大的时候的极限是多少,为什么
极限为0,因为当x趋近于无穷大的时候sinx的取值范围是[-1,1]。而x为分母,当趋近于无穷大的时候sinx/x的极限是0。
极限的定义:
极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。
极限性质:
1.极限的不等式性质
2.收敛数列的有界性
设Xn收敛,则Xn有界。(即存在常数M>0,|Xn|≤M, n=1,2,...)
3.夹逼定理
4.单调有界准则:单调有界的数列(函数)必有极限
函数极限的基本性质
1.极限的不等式性质
2.极限的保号性
3.存在极限的函数局部有界性
设当x→x0时f(x)的极限为A,则f(x)在x0的某空心邻域U0(x0,δ) = {x| 0 < | x - x0 | < δ}内有界,即存在 δ>0, M>0,使得0 < | x - x0 | < δ 时 |f(x)| ≤M.
4.夹逼定理
极限为0。
分析过程:
极限为0,因为当x趋近于无穷大的时候sinx的取值范围是[-1,1]。而x为分母,当趋近于无穷大的时候sinx/x的极限是0。
扩展资料:
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)
9、洛必达法则求极限