复变函数指出函数的解析性区域,并求出其导数

f|(z)=z^3+2iz1.这个函数如何判断是否可导?是将Z写成X+iy的形式带进去,用CR方法求是否可导,还是怎么样?2.题目是指出函数的解析性区域,并求出其导数。意... f|(z)=z^3+2iz
1.这个函数如何判断是否可导?是将Z写成X+iy的形式带进去,用CR方法求是否可导,还是怎么样?
2.题目是指出函数的解析性区域,并求出其导数。意思是先说出解析性区域,再求导数???
展开
 我来答
小采姐姐
高能答主

2021-10-12 · 探索社会,乐得其所!
小采姐姐
采纳数:3683 获赞数:136168

向TA提问 私信TA
展开全部

1、函数可导的定义:判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。

2、函数f (z)=u(x,y)+iv(x,y):解析的充要条件为U,V 在区域D上可微(即为存在且连续),并且满足C.-R.方程。可通过解析的充要条件进行判断解析性区域。

概念分析

设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的。

如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
匿名用户
2020-06-09
展开全部

1.函数可导的定义。

首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。

2.函数f (z)=u(x,y)+iv(x,y)解析的充要条件为U,V 在区域D上可微(即为存在且连续),并且满足C.-R.方程。

可通过解析的充要条件进行判断解析性区域。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式