高等数学 二重积分 求详解。
2个回答
展开全部
积分域是:
x^2+y^2≤2y
x^2+y^2-2y≤0
x^2+(y-1)^2≤1
积分是在上述圆的范围内进行.
令x=pcos(θ),y=psin(θ),此圆的方程可写为:
[pcos(θ)]^2+[psin(θ)-1]^2=1
p^2-2psin(θ)+1=1
p(p-2sin(θ)=0
解得:p=0和p=2sin(θ)
显然p=2sin(θ)是此圆的极坐标方程.
对任一个给定的p,可求出此圆上对应的θ:
θ=arcsin(p/2)
利用积分函数的对称性(对y轴对称),θ的积分范围可定为[arcsin(θ),pai/2],p的范围是从0到2.将积分结果乘2,即得最后结果.
此处,pai代表圆周率.
x^2+y^2≤2y
x^2+y^2-2y≤0
x^2+(y-1)^2≤1
积分是在上述圆的范围内进行.
令x=pcos(θ),y=psin(θ),此圆的方程可写为:
[pcos(θ)]^2+[psin(θ)-1]^2=1
p^2-2psin(θ)+1=1
p(p-2sin(θ)=0
解得:p=0和p=2sin(θ)
显然p=2sin(θ)是此圆的极坐标方程.
对任一个给定的p,可求出此圆上对应的θ:
θ=arcsin(p/2)
利用积分函数的对称性(对y轴对称),θ的积分范围可定为[arcsin(θ),pai/2],p的范围是从0到2.将积分结果乘2,即得最后结果.
此处,pai代表圆周率.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询