已知2sinα乘tanα=3,o<α<π。 求α的值 求f(x)=4cosxcos(x-α)在(0
已知2sinα乘tanα=3,o<α<π。求α的值求f(x)=4cosxcos(x-α)在(0,π/4)的值域...
已知2sinα乘tanα=3,o<α<π。
求α的值
求f(x)=4cosxcos(x-α)在(0,π/4)的值域 展开
求α的值
求f(x)=4cosxcos(x-α)在(0,π/4)的值域 展开
2个回答
展开全部
16、(1)2sina*tana=3
2sin^2a/cosa=3
2(1-cos^2a)=3cosa
2cos^2a+3cosa-2=0
(2cosa-1)(cosa+2)=0
cosa=1/2或-2(舍去)
因为0<a<π,所以a=π/3
(2)f(x)=4cosxcos(x-a)
=4cosxcos(x-π/3)
=4cosx[(1/2)*cosx+(√3/2)*sinx]
=2cos^2x+2√3*cosxsinx
=1+cos2x+√3*sin2x
=2cos(2x-π/3)+1
因为0<x<π/4,所坦埋举以-π/3<2x-π/3<π/6
f(x)的值域为[1,2)
17、让碧(1)根据题意,6S2=4S1+2S3
3S2=2S1+S3
3(a1+a2)=2a1+(a1+a2+a3)
2a2=a3
2a1*q=a1*q^2
因为a1=2≠0,所以q^2-2q=0
q(q-2)=0
q=2或0(舍去)
所以an=2^n
(2)bn=|2n-5|*an
=|2n-5|*2^n
当n=1时,Tn=b1=3*2^1=6
当n=2时,Tn=b1+b2=3*2^1+2^2=10
当n>=3时液核,Tn=T2+(b3+b4+...+bn)=10+[2^3+3*2^4+...+(2n-5)*2^n]
2Tn=20+[2^4+3*2^5+...+(2n-5)*2^(n+1)]
下式减上式,得:
Tn=10-8-2*(2^4+2^5+...+2^n)+(2n-5)*2^(n+1)
=2-[2^5+2^6+...+2^(n+1)]+(2n-5)*2^(n+1)
=2-(2^5)*[1-2^(n-3)]/(1-2)+(2n-5)*2^(n+1)
=2-2^(n+2)+32+(2n-5)*2^(n+1)
=34+(4n-14)*2^n
2sin^2a/cosa=3
2(1-cos^2a)=3cosa
2cos^2a+3cosa-2=0
(2cosa-1)(cosa+2)=0
cosa=1/2或-2(舍去)
因为0<a<π,所以a=π/3
(2)f(x)=4cosxcos(x-a)
=4cosxcos(x-π/3)
=4cosx[(1/2)*cosx+(√3/2)*sinx]
=2cos^2x+2√3*cosxsinx
=1+cos2x+√3*sin2x
=2cos(2x-π/3)+1
因为0<x<π/4,所坦埋举以-π/3<2x-π/3<π/6
f(x)的值域为[1,2)
17、让碧(1)根据题意,6S2=4S1+2S3
3S2=2S1+S3
3(a1+a2)=2a1+(a1+a2+a3)
2a2=a3
2a1*q=a1*q^2
因为a1=2≠0,所以q^2-2q=0
q(q-2)=0
q=2或0(舍去)
所以an=2^n
(2)bn=|2n-5|*an
=|2n-5|*2^n
当n=1时,Tn=b1=3*2^1=6
当n=2时,Tn=b1+b2=3*2^1+2^2=10
当n>=3时液核,Tn=T2+(b3+b4+...+bn)=10+[2^3+3*2^4+...+(2n-5)*2^n]
2Tn=20+[2^4+3*2^5+...+(2n-5)*2^(n+1)]
下式减上式,得:
Tn=10-8-2*(2^4+2^5+...+2^n)+(2n-5)*2^(n+1)
=2-[2^5+2^6+...+2^(n+1)]+(2n-5)*2^(n+1)
=2-(2^5)*[1-2^(n-3)]/(1-2)+(2n-5)*2^(n+1)
=2-2^(n+2)+32+(2n-5)*2^(n+1)
=34+(4n-14)*2^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询