判断函数递增利用导函数是大于零还是大于等于零

 我来答
教育小百科达人
2018-10-11 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:484万
展开全部

首先都是说这个函数的连续且可导的范围内。

导函数大于0,是函数递增的充分但不必要条件。

也就是说,如果一个函数的导函数大于0,那么这个函数必然是递增的。但是如果一个函数是递增的,不一定导函数处处都大于0,例如f(x)=x³,在x=0点的导数就等于0.

而导函数大于等于0是函数递增的必要但不充分条件。

如果一个函数是递增的,那么其导函数必然大于等于0;但是如果一个函数的导函数大于等于0,不一定函数递增,例如某个分段函数

f(x)=(x+1)³(x<-1);0(-1<x<1);(x-1)³(x≥1)

这个分段函数,在全体实数范围内可导,导函数大于等于0,但是其中-1<x<1这段不是递增的。

扩展资料:

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)

如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)

如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数   。

若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数,记作:y'或者f′(x)。

函数f(x)在它的每一个可导点x。处都对应着一个唯一确定的数值——导数值f′(x),这个对应关系给出了一个定义在f(x)全体可导点的集合上的新函数,称为函数f(x)的导函数,记为f′(x)。

参考资料:百度百科-导函数

厉害了叮当猫
2018-11-05 · TA获得超过3547个赞
知道答主
回答量:55
采纳率:0%
帮助的人:1.6万
展开全部

前提是说这个函数的连续且可导的范围内。导函数大于0,是函数递增的充分但不必要条件。一个函数的导函数如果大于0,这个函数必然是递增的。

但是如果一个函数是递增的,不一定导函数处处都大于0,例如f(x)=x³,在x=0点的导数就等于0.
而导函数大于等于0是函数递增的必要但不充分条件

一个函数是递增的,那么其导函数必然大于等于0;但如果一个函数的导函数大于等于0,不一定函数递增。

例如某个分段函数:
f(x)=(x+1)³(x<-1);0(-1<x<1);(x-1)³(x≥1)。

这个分段函数,在全体实数范围内可导,导函数大于等于0,但是其中-1<x<1这段不是递增的。

扩展资料:

增函数:

一般地,设函数f(x)的定义域为D,如果对于定义域D内的某个区间上的

任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。 此区间就叫做函数f(x)的单调增区间。

随着X增大,Y增大者为增函数。

减函数:

一般地,设函数f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)> f(x2),那么就说f(x)在区间D上是减函数。

即随着自变量x增大,函数值y减小的函数为减函数。

参考资料:百度百科-增函数

百度百科-减函数




本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2016-03-05
展开全部
当然,首先都是说这个函数的连续且可导的范围内。
这么说吧,导函数大于0,是函数递增的充分但不必要条件。
也就是说,如果一个函数的导函数大于0,那么这个函数必然是递增的。但是如果一个函数是递增的,不一定导函数处处都大于0,例如f(x)=x³,在x=0点的导数就等于0.
而导函数大于等于0是函数递增的必要但不充分条件。
如果一个函数是递增的,那么其导函数必然大于等于0;但是如果一个函数的导函数大于等于0,不一定函数递增,例如某个分段函数
f(x)=(x+1)³(x<-1);0(-1<x<1);(x-1)³(x≥1)
这个分段函数,在全体实数范围内可导,导函数大于等于0,但是其中-1<x<1这段不是递增的。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
薛定谔的猫980
2019-12-23
知道答主
回答量:5
采纳率:0%
帮助的人:3323
展开全部
判断函数递增利用导函数大于 零
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式