设A,B为两个随机事件,已知P(A)=0.5,P(B)=0.3,P(AB)=0.7,求P(A | B)
P(A)=0.5,P(B)=0.7,P(AUB)=0.8
因为 P(AUB)=P(A)+P(B)-P(AB)
则P(A-B)=P(A)-P(AB)=P(AUB)-P(B)=0.1
P(B-A))=P(B)-P(AB)=P(AUB)-P(A)=0.3
互斥事件(互不相容事件)事件A与事件B,AB=Φ,事件A与事件B不能同时发生,事件A与事件B没有公共的样本点。
事件A的对立事件,事件A不发生,事件A的对立事件是由不属于事件A的样本点组成,记作ā。
差事件发生,即事件A发生且事件B不发生,是由属于事件A但不属于事件B的样本点组成,记作A-B。
扩展资料
随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母A、B、C等表示。随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…}。仅含一个样本点的随机事件称为基本事件,含有多个样本点的随机事件称为复合事件。
概率的性质:
性质1.P(Φ)=0.
性质2.(有限可加性)当n个事件A1,…,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An).
性质3.对于任意一个事件A:P(A)=1-P(非A).
性质4.当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B)。
性质5.对于任意一个事件A,P(A)≤1。
性质6.对任意两个事件A和B,P(B-A)=P(B)-P(AB)。
性质7.(加法公式)对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。
参考资料:百度百科概率
2017-09-11
1.P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,可得P(AB)=1/12,P(B)=1/6
P(X=0,Y=0)=P(A非B非)=1-P(A+B)=1-[P(A)+P(B)-P(AB)]=2/3
P(X=1,Y=0)=P(AB非)=P(A)-P(AB)=1/6
P(X=0,Y=1)=P(BA非)=P(B)-P(AB)=1/12
P(X=1,Y=1)=P(AB)=1/12 联合分布就可得出.
2.E(X)=1/4,E(Y)= 1/6,E(XY)=1/12,COV(X,Y)=E(XY)-E(X)E(Y)=1/24
D(X)=E(X2)-[E(X)]2=3/16,D(Y)=E(Y2)-[E(Y)]2=5/36
ρ=COV(X,Y)=COV(X,Y)/[√D(X)√D(Y)]=1/√15
推荐于2017-09-11
因为 P(AUB)=P(A)+P(B)-P(AB)
则P(A-B)=P(A)-P(AB)=P(AUB)-P(B)=0.1
P(B-A))=P(B)-P(AB)=P(AUB)-P(A)=0.3