证明过程如图所示:
![](https://iknow-pic.cdn.bcebos.com/962bd40735fae6cd5de8305300b30f2442a70fa7?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto)
在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目。
即 A的列空间的维度(列空间是由 A的纵列生成的 F的子空间)。因为列秩和行秩是相等的,我们也可以定义 A的秩为 A的行空间的维度。
扩展资料
计算矩阵A的秩的最容易的方式是高斯消去法。高斯算法生成的 A的行梯阵形式有同 A一样的秩,它的秩就是非零行的数目。
例如考虑4×4矩阵。
我们看到第 2 纵列是第 1 纵列的两倍,而第4纵列等于第1和第3纵列的总和。第1和第3纵列是线性无关的,所以A的秩是2。