1个回答
展开全部
(2) f(x)=lg2x/((x+1)
g(x)=f(x)+lg(1-x)/2x
g(x)定义域:
2x/(x+1)>0 得 x>0或x<-1
且
(x-1)/2x<0 得 0<x<1
定义域为:0<x<1
g(x)=lg2x/(x+1)+lg(1-x)/2x=lg(1-x)/(x+1)
g(m)+g(n)=lg(1-m)(n-1)/[(m+1)(n+1)]
1-[(m+n)/(1+mn)]=(mn+1-m-n)/(1+mn)=(m-1)(n-1)/(1+mn)
[(m+n)/(1+mn)]+1=(m+n+mn+1)/(1+mn)=(m+1)(n+1)/(1+mn)
g[(m+n)/(1+mn)]=lg(m-1)(n-1)/[(m+1)(n+1)]
g(m)+g(n)-g[(m+n)/(1+mn)]
=lg(m-1)(n-1)/[(m+1)(n+1)]-lg(m-1)(n-1)/[(m+1)(n+1)]
=lg1
=0
g(x)=f(x)+lg(1-x)/2x
g(x)定义域:
2x/(x+1)>0 得 x>0或x<-1
且
(x-1)/2x<0 得 0<x<1
定义域为:0<x<1
g(x)=lg2x/(x+1)+lg(1-x)/2x=lg(1-x)/(x+1)
g(m)+g(n)=lg(1-m)(n-1)/[(m+1)(n+1)]
1-[(m+n)/(1+mn)]=(mn+1-m-n)/(1+mn)=(m-1)(n-1)/(1+mn)
[(m+n)/(1+mn)]+1=(m+n+mn+1)/(1+mn)=(m+1)(n+1)/(1+mn)
g[(m+n)/(1+mn)]=lg(m-1)(n-1)/[(m+1)(n+1)]
g(m)+g(n)-g[(m+n)/(1+mn)]
=lg(m-1)(n-1)/[(m+1)(n+1)]-lg(m-1)(n-1)/[(m+1)(n+1)]
=lg1
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询