中国古代的几何学是怎样的
2个回答
展开全部
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达.现在就让我们来简单回顾一下初等几何数学在中国发展的历史.
自明朝后期欧几里得“几何原本”出版之前,中国的几何早已在独立发展着.应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识.
中国的几何有悠久的历史,可靠的记录从公元前十五世纪,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的.
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理.圆和方的研究在古代中国几何发展中占了重要位置.墨子对圆的定义是:“圆,一中同长也.”—个中心到圆周相等的图形叫圆,这解释要比欧几里得还早一百多年.
在圆周率的计算上有刘歆、张衡、刘徽、王蕃、祖冲之、赵友钦等人都较有成就,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名.
祖冲之所得的结果π=355/133要比欧洲早一千多年.在刘徽的《九章算术》注中曾多次显露出他对极限概念的天才.在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点.中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
祖冲之、祖暅(gèng)父子着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步:根据史料记载,其著作《缀术》取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926
自明朝后期欧几里得“几何原本”出版之前,中国的几何早已在独立发展着.应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识.
中国的几何有悠久的历史,可靠的记录从公元前十五世纪,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的.
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理.圆和方的研究在古代中国几何发展中占了重要位置.墨子对圆的定义是:“圆,一中同长也.”—个中心到圆周相等的图形叫圆,这解释要比欧几里得还早一百多年.
在圆周率的计算上有刘歆、张衡、刘徽、王蕃、祖冲之、赵友钦等人都较有成就,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名.
祖冲之所得的结果π=355/133要比欧洲早一千多年.在刘徽的《九章算术》注中曾多次显露出他对极限概念的天才.在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点.中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
祖冲之、祖暅(gèng)父子着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步:根据史料记载,其著作《缀术》取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926
展开全部
在圆周率的计算上有刘歆、张衡、刘徽、王蕃、祖冲之、赵友钦等人都较有成就,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。
祖冲之所得的结果π=355/133要比欧洲早一千多年。在刘徽的《九章算术》注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
祖冲之、祖暅(gèng)父子着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步:根据史料记载,其著作《缀术》取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,②祖暅在刘徽工作的基础上推导出球体体积公式。
祖冲之所得的结果π=355/133要比欧洲早一千多年。在刘徽的《九章算术》注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
祖冲之、祖暅(gèng)父子着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步:根据史料记载,其著作《缀术》取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,②祖暅在刘徽工作的基础上推导出球体体积公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询