找祖冲之张衡的故事为他们写小传
1个回答
展开全部
小故事:祖父经常给祖冲之讲一些科学家的故事,其中张衡发明地动仪的故事深深打动了祖冲之幼小的心灵.
祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍.
天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少.
祖冲之不喜欢读古书.5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句.气得父亲又打又骂.可是他喜欢数学和天文.
一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对.
第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆.
一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:
“让我用绳子量量您的车轮,行吗?”老人点点头.
祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径.量来量去,他总觉得车轮的直径没有1/3的圆周长.
祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的.
这究竟是为什么?这个问题一直在他的脑海里萦绕.他决心要解开这个谜.
经过多年的努力学习,祖冲之研究了刘徽的“割圆术”.所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长.
祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 .14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ⋯⋯ 以求得更精确的结果.
当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算.
祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来.
此时,祖冲之的儿子祖 已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 .000002丈.
祖 对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了.”祖冲之却摇摇头说:“要推翻他一定要有科学根据.”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的.
祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休.
祖冲之从12288边形,算到24567边形,两者相差仅0 .0000001.祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 .1415926,而小于3 .1415927.
很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教.之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7.直到1000多年后,德国数学家鄂图才得出相同的结果.
张衡很小的时候,小张衡就是奶奶的小尾巴,不管奶奶走到哪里,后面总会有小张衡的影子。他总是缠着奶奶给他讲故事。老人家似乎有讲不完的故事,又加上十分喜欢这个聪明的孙子,所以只要小张衡提出要听故事,奶奶就给他讲。在这些故事中,小张衡最喜欢的是北斗七星和月亮的传说了,他总是一边抬着头望着天空里眨眼的星星,一边听奶奶讲,还不时地问奶奶:星星怎么不会像苹果一样掉下来呢?星星害怕下雨吗?……对于聪明孙子的问题,奶奶当然也回答不上来,这让他越发觉得浩渺的夜空里会有无数的宝藏,同时也在他的幼小的心灵里埋下了无数的好奇的问号。从奶奶那里得不到答案,小张衡就急切地读书,他希望能从书中找到自己想要的答案。
在他十岁那年,祖母和父亲相继去世了。舅舅送张衡到书馆里去读书。他深知读书对他来说是多么的不容易,因此非常刻苦。不久,小张衡开始作诗了。他作的诗常常受到老师的夸奖呢。为增长知识,小张衡博览群书。一天,他看到一本叫《鹗冠子》的书,被书中按北斗星定季节的四句话深深吸引住了。从此,他常常仰望着星空,观察北斗星的变化,日积月累,发现北斗星在围绕着一个中心转,一年转一圈。他自言自语地说:“啊,我终于明白'北斗星移',是怎么一回事啦!”由于勤学好问,随着一天天地长大,张衡的知识也越来越丰富了,终于成为了科学家。
摘自百度网友,谢谢。
祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍.
天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少.
祖冲之不喜欢读古书.5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句.气得父亲又打又骂.可是他喜欢数学和天文.
一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对.
第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆.
一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:
“让我用绳子量量您的车轮,行吗?”老人点点头.
祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径.量来量去,他总觉得车轮的直径没有1/3的圆周长.
祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的.
这究竟是为什么?这个问题一直在他的脑海里萦绕.他决心要解开这个谜.
经过多年的努力学习,祖冲之研究了刘徽的“割圆术”.所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长.
祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 .14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ⋯⋯ 以求得更精确的结果.
当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算.
祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来.
此时,祖冲之的儿子祖 已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 .000002丈.
祖 对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了.”祖冲之却摇摇头说:“要推翻他一定要有科学根据.”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的.
祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休.
祖冲之从12288边形,算到24567边形,两者相差仅0 .0000001.祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 .1415926,而小于3 .1415927.
很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教.之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7.直到1000多年后,德国数学家鄂图才得出相同的结果.
张衡很小的时候,小张衡就是奶奶的小尾巴,不管奶奶走到哪里,后面总会有小张衡的影子。他总是缠着奶奶给他讲故事。老人家似乎有讲不完的故事,又加上十分喜欢这个聪明的孙子,所以只要小张衡提出要听故事,奶奶就给他讲。在这些故事中,小张衡最喜欢的是北斗七星和月亮的传说了,他总是一边抬着头望着天空里眨眼的星星,一边听奶奶讲,还不时地问奶奶:星星怎么不会像苹果一样掉下来呢?星星害怕下雨吗?……对于聪明孙子的问题,奶奶当然也回答不上来,这让他越发觉得浩渺的夜空里会有无数的宝藏,同时也在他的幼小的心灵里埋下了无数的好奇的问号。从奶奶那里得不到答案,小张衡就急切地读书,他希望能从书中找到自己想要的答案。
在他十岁那年,祖母和父亲相继去世了。舅舅送张衡到书馆里去读书。他深知读书对他来说是多么的不容易,因此非常刻苦。不久,小张衡开始作诗了。他作的诗常常受到老师的夸奖呢。为增长知识,小张衡博览群书。一天,他看到一本叫《鹗冠子》的书,被书中按北斗星定季节的四句话深深吸引住了。从此,他常常仰望着星空,观察北斗星的变化,日积月累,发现北斗星在围绕着一个中心转,一年转一圈。他自言自语地说:“啊,我终于明白'北斗星移',是怎么一回事啦!”由于勤学好问,随着一天天地长大,张衡的知识也越来越丰富了,终于成为了科学家。
摘自百度网友,谢谢。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询