"求函数 y=ln(1+x/1-x)的n阶导数的一般表达式"这个题该怎么做(我想要看看过程) 先谢谢了!!

雪剑20
推荐于2016-12-01 · TA获得超过2.6万个赞
知道大有可为答主
回答量:3962
采纳率:0%
帮助的人:6679万
展开全部
y=ln[(1+x)/(1-x)]
=ln(1+x)-ln(1-x)
[ln(1+x)]'=1/(x+1)
[ln(1-x)]'=-1/(1-x)
y'=1/(x+1)+1/(1-x)

[1/(x+1)]'=-1/(x+1)^2
[1/(x+1)]''=2/(x+1)^3
[1/(x+1)]^(n)=(-1)^(n)*n!/(x+1)^(n+1)

[1/(1-x)]'=-1/(1-x)^2
[1/(1-x)]''=-2/(1-x)^3
[1/(1-x)]^(n)=-n!/(1-x)^(n+1)

所以
[ln(1+x)/(1-x)]^(n)
=(-1)^(n+1)*(n-1)!/(x+1)^(n)+(n-1)!/(1-x)^(n)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式