高数题目。。。。。 20
2个回答
展开全部
原式=∫1/(x+1)(x^2-x+1)dx
=(1/3)*∫[1/(x+1)-(x-2)/(x^2-x+1)]dx
=(1/3)*ln|x+1|-(1/3)*∫[(x-1/2)/(x^2-x+1)-(3/2)/(x^2-x+1)]dx
=(1/3)*ln|x+1|-(1/6)*∫d(x^2-x+1)/(x^2-x+1)+(1/2)*∫d(x-1/2)/[(x-1/2)^2+3/4]
=(1/3)*ln|x+1|-(1/6)*ln|x^2-x+1|+(√3/3)*arctan[(x-1/2)*√3/3]+C,其中C是任意常数
=(1/3)*∫[1/(x+1)-(x-2)/(x^2-x+1)]dx
=(1/3)*ln|x+1|-(1/3)*∫[(x-1/2)/(x^2-x+1)-(3/2)/(x^2-x+1)]dx
=(1/3)*ln|x+1|-(1/6)*∫d(x^2-x+1)/(x^2-x+1)+(1/2)*∫d(x-1/2)/[(x-1/2)^2+3/4]
=(1/3)*ln|x+1|-(1/6)*ln|x^2-x+1|+(√3/3)*arctan[(x-1/2)*√3/3]+C,其中C是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询