把极限转换成定积分来解决,怎么转换

 我来答
轮看殊O
高粉答主

2019-05-12 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:744万
展开全部

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

设函数y=f(x) 在区间[a,b]上可积,对任意x∈[a,b],y=f(x)在[a,x] 上可积,且它的值与x构成一种对应关系,称Φ(x)为变上限的定积分函数。

积分变限函数是一类重要的函数,它最著名的应用是在牛顿一莱布尼兹公式的证明中.事实上,积分变限函数是产生新函数的重要工具,尤其是它能表示非初等函数,同时能将积分学问题转化为微分学问题。积分变限函数除了能拓展我们对函数概念的理解外,在许多场合都有重要的应用。

扩展资料

求极限基本方法有:

1.直接代入法

对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。

2.无穷大与无穷小的转换法

在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。

(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。

(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。

3.除以适当无穷大法

对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。

hxzhu66
高粉答主

2017-03-29 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:96%
帮助的人:1.2亿
展开全部

就是反过来应用定积分的定义,下图是这种做法的原理与例题。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式