高中三角函数急急急必采纳
高中三角函数急急急必采纳高三三角函数问题急急急必采纳已知sin(α+π/4)=√2/10,α∈(π/2,π)求cosα的值求sin(2α-π/4)的值...
高中三角函数急急急必采纳高三三角函数问题急急急必采纳已知sin(α+π/4)=√2 /10,α∈(π/2,π)
求cosα的值
求sin(2α- π/4)的值 展开
求cosα的值
求sin(2α- π/4)的值 展开
展开全部
解1由sin(a+π/4)=√2/10,a+π/4属于(3π/4,5π/4)
知cos(a+π/4)=-7√2/10
故cosa=cos(a+π/4-π/4)
=cos(a+π/4)cosπ/4+sin(a+π/4)sinπ/4
=-7√2/10×√2/2+√2/10×√2/2
=(-14+2)/20
=-3/5
(2)由cosa=-4/5,即sin2a=2sinacosa=24/25
cos2a=2cos^2a-1=7/25
sin(2a-π/4)
=sin2acosπ/4+cos2acosπ/4
=24/25×√2/2+7/25×√2/2
=31√2/50
知cos(a+π/4)=-7√2/10
故cosa=cos(a+π/4-π/4)
=cos(a+π/4)cosπ/4+sin(a+π/4)sinπ/4
=-7√2/10×√2/2+√2/10×√2/2
=(-14+2)/20
=-3/5
(2)由cosa=-4/5,即sin2a=2sinacosa=24/25
cos2a=2cos^2a-1=7/25
sin(2a-π/4)
=sin2acosπ/4+cos2acosπ/4
=24/25×√2/2+7/25×√2/2
=31√2/50
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询