imagenet是基于什么模型的
2017-04-12
展开全部
1、准备数据。
假设已经下载好数据集和验证集,存储路径为:
/path/to/imagenet/train/n01440764/n01440764_10026.JPEG
/path/to/imagenet/val/ILSVRC2012_val_00000001.JPEG
首选需要创建一个txt文件,列举出所有图像以及对应的lable,caffe包“Python/caffe/imagenet/ilsvrc_2012_train.txt”和“ilsvrc_2012_val.txt”两个文件分别是标好的训练集和验证集的文件,共分为1000类。
还需要注意的是,所有的图像都需要归一到同样的尺寸。
2、转化生成训练集。
运行下面的命令:
GLOG_logtostderr=1 examples/convert_imageset.bin /path/to/imagenet/train/ python/caffe/imagenet/ilsvrc_2012_train.txt /path/to/imagenet-train-leveldb
生成文件存储在“/path/to/imagenet-train_leveldb”路径下。
3、计算图像均值。
执行命令:
examples/demo_compute_image_mean.bin /path/to/imagenet-train-leveldb /path/to/mean.binaryproto
第一个参数是执行脚本代码,第二个参数是上一步生成的数据集,第三个参数是存储图像均值的目录路径。
4、定义网络。
ImageNet的网络定义在“examples/imagenet.prototxt”文件中,使用时需要修改里面source和meanfile变量的值,指向自己文件的路径。
仔细观察imagenet.prototxt和imagenet_val.prototxt文件可以发现,训练和验证的参数大部分都相同,不同之处在于初始层和最后一层。训练时,使用softmax_loss层来计算损失函数和初始化后向传播,验证时,使用accuracy层来预测精确度。
在文件“examples/imagenet_solver.prototxt”中定义solver协议,同样需要修改train_net和test_net的路径。
5、训练网络。
执行命令:
GLOG_logtostderr=1 examples/train_net.bin examples/imagenet_solver.prototxt
6、在python中使用已经训练好的模型。
Caffe只提供封装好的imagenet模型,给定一副图像,直接计算出图像的特征和进行预测。首先需要下载模型文件。
假设已经下载好数据集和验证集,存储路径为:
/path/to/imagenet/train/n01440764/n01440764_10026.JPEG
/path/to/imagenet/val/ILSVRC2012_val_00000001.JPEG
首选需要创建一个txt文件,列举出所有图像以及对应的lable,caffe包“Python/caffe/imagenet/ilsvrc_2012_train.txt”和“ilsvrc_2012_val.txt”两个文件分别是标好的训练集和验证集的文件,共分为1000类。
还需要注意的是,所有的图像都需要归一到同样的尺寸。
2、转化生成训练集。
运行下面的命令:
GLOG_logtostderr=1 examples/convert_imageset.bin /path/to/imagenet/train/ python/caffe/imagenet/ilsvrc_2012_train.txt /path/to/imagenet-train-leveldb
生成文件存储在“/path/to/imagenet-train_leveldb”路径下。
3、计算图像均值。
执行命令:
examples/demo_compute_image_mean.bin /path/to/imagenet-train-leveldb /path/to/mean.binaryproto
第一个参数是执行脚本代码,第二个参数是上一步生成的数据集,第三个参数是存储图像均值的目录路径。
4、定义网络。
ImageNet的网络定义在“examples/imagenet.prototxt”文件中,使用时需要修改里面source和meanfile变量的值,指向自己文件的路径。
仔细观察imagenet.prototxt和imagenet_val.prototxt文件可以发现,训练和验证的参数大部分都相同,不同之处在于初始层和最后一层。训练时,使用softmax_loss层来计算损失函数和初始化后向传播,验证时,使用accuracy层来预测精确度。
在文件“examples/imagenet_solver.prototxt”中定义solver协议,同样需要修改train_net和test_net的路径。
5、训练网络。
执行命令:
GLOG_logtostderr=1 examples/train_net.bin examples/imagenet_solver.prototxt
6、在python中使用已经训练好的模型。
Caffe只提供封装好的imagenet模型,给定一副图像,直接计算出图像的特征和进行预测。首先需要下载模型文件。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询