跪求初二数学解方程化简求值80题

初二上期关于实数和平方的方程题比如:(x+2)(x-2)+25=37化简求值题目比如:4(m+1)~(平方)-(2m+5)(2m-5),其中m=-3.太难的不要太简单的也... 初二上期关于实数和平方的方程题
比如:(x+2)(x-2)+25=37
化简求值题目比如:4(m+1)~(平方)-(2m+5)(2m-5),其中m= -3.
太难的不要太简单的也不用了,越多越好,至于选择题应用题填空题就不用麻烦找来了,有几题要几题,拜托了!
分数暂时80,好的答案还可以追加,谢谢!
太简单不要,还有化简求值的拜托几题,网上题目真的好难找。还有莪只学到实数的一半,其他的不要叻,至少题目裏也要有平方符号但是不要分解因式的。
只要纯计算题,别的发过来绝对不采纳,没时间叻,有题目就拿出来嘛,一题都要- =
展开
 我来答
12ab3c4defg
2008-11-09 · TA获得超过5177个赞
知道小有建树答主
回答量:616
采纳率:0%
帮助的人:0
展开全部
3X+189=521
4Y+119=22
3X*189=5
8Z/6=458
3X+77=59
4Y-6985=81
87X*13=5
7Z/93=41
15X+863-65X=54
58Y*55=27489
z*(z-3)=4
方程x2= 的根为 。

2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。

二、选择题:(3’×8=24’)

11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1

12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2 D、若分式 的值为零,则x=2

13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数

14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3

15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0

16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800

17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根

18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0

三、解下列方程:
19、(x-2)2-3=0
20、x(8+x)=16
21、(2x-3)2-2(2x-3)-3=0
22、2x2-5x+1=0

http://zhidao.baidu.com/question/30122056.html?si=3
这是其他人答过的,挺全的

参考资料: 百度资料

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
飞叶神速
2008-11-10 · TA获得超过2931个赞
知道小有建树答主
回答量:174
采纳率:50%
帮助的人:124万
展开全部
3X+189=521
4Y+119=22
3X*189=5
8Z/6=458
3X+77=59
4Y-6985=81
87X*13=5
7Z/93=41
15X+863-65X=54
58Y*55=27489
z*(z-3)=4
方程x2= 的根为 。

2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。

3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。

4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。

5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。

6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。

7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。

8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。

9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。

10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。

二、选择题:(3’×8=24’)

11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )

A、任意实数 B、m≠1 C、m≠-1 D、m>-1

12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )

A、 若x2=4,则x=2 B、若3x2=bx,则x=2

C、 x2+x-k=0的一个根是1,则k=2

D、若分式 的值为零,则x=2

13、方程(x+3)(x-3)=4的根的情况是( )

A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数

14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。

A、-1 B、-4 C、4 D、3

15、已知方程( )2-5( )+6=0,设 =y则可变为( )。

A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0

16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )

A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800

17、已知一元二次方程2x2-3x+3=0,则( )

A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根

18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )

A、2 B、-2 C、-1 D、0

三、解下列方程:(5’×5=25’)

19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)

21、x(8+x)=16 22、

23、(2x-3)2-2(2x-3)-3=0

四、解答题。

24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)

25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)

26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。

α、β是方程 的两根,则α+β=__________,αβ=__________, __________, __________。
2.如果3是方程 的一个根,则另一根为__________,a=__________。
3.方程 两根为-3和4,则ab=__________。
4.以 和 为根的一元二次方程是__________。
5.若矩形的长和宽是方程 的两根,则矩形的周长为__________,面积为__________。
6.方程 的根的倒数和为7,则m=__________。

二、选择题
1.满足两实根和为4的方程是( )。
(A) (B)
(C) (D)
2.若k>1,则关于x的方程 的根的情况是( )。
(A)有一正根和一负根 (B)有两个正根
(C)有两个负根 (D)没有实数根
3.已知两数和为-6,两数积为2,则这两数为( )。
(A) , (B) ,
(C) , (D) ,
4.若方程 两根之差的绝对值为8,则p的值为( )。
(A)2 (B)-2
(C)±2 (D)

三、解答题
1.已知 、 是方程 的两个实数根,且 ,求k的值。
2.不解方程,求作一个新的一元二次方程,使它的两根分别为方程 两根的平方。
3.如果关于x的方程 的两个实数根都小于1,求m的取值范围。
4.m为何值时,方程
(1)两根互为倒数;
(2)有两个正根;
(3)有一个正根一个负根。

解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

用配方法解方程 3x2-4x-2=0

用公式法解方程 2x2-8x=-5

用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

用适当的方法解下列方程。(选学)

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。

用配方法解关于x的一元二次方程x2+px+q=0

一)用适当的方法解下列方程:

1. 6x2-x-2=0 2. (x+5)(x-5)=3

3. x2-x=0 4. x2-4x+4=0

5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0

(二)解下列关于x的方程

1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0

选择题

1.方程x(x-5)=5(x-5)的根是( )

A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5

2.多项式a2+4a-10的值等于11,则a的值为( )。

A、3或7 B、-3或7 C、3或-7 D、-3或-7

3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个

根是( )。

A、0 B、1 C、-1 D、±1

4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。

A、b≠0且c=0 B、b=0且c≠0

C、b=0且c=0 D、c=0

5. 方程x2-3x=10的两个根是( )。

A、-2,5 B、2,-5 C、2,5 D、-2,-5

6. 方程x2-3x+3=0的解是( )。

A、 B、 C、 D、无实根

7. 方程2x2-0.15=0的解是( )。

A、x= B、x=-

C、x1=0.27, x2=-0.27 D、x1=, x2=-

8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。

A、(x-)2= B、(x- )2=-

C、(x- )2= D、以上答案都不对

9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。

A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1
用直接开平方法解方程(x-3)2=8得方程的根为( )

(A)x=3+2 (B)x=3-2

(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2

一、填空题:(每空3分,共30分)
1、方程(x-1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .
2、关于x的方程是(m2-1)x2+(m-1)x-2=0,那么当m 时,方程为一元二次方程;
当m 时,方程为一元一次方程.
3、若方程 有增根,则增根x=__________,m= .
4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.
5、若方程kx2-6x+1=0有两个实数根,则k的取值范围是 .
6、设x1、x2是方程3x2+4x-5=0的两根,则 .x12+x22= .
7、关于x的方程2x2+(m2-9)x+m+1=0,当m= 时,两根互为倒数;
当m= 时,两根互为相反数.
8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,
该方程的另一个根x2 = .
9、方程x2+2x+a-1=0有两个负根,则a的取值范围是 .
10、若p2-3p-5=0,q2-3q-5=0,且p≠q,则 .
二、选择题:(每小题3分,共15分)
1、方程 的根的情况是( )
(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根
(C)方程没有实数根 (D)方程的根的情况与 的取值有关
2、已知方程 ,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是-1 (D)方程两根积是两根和的2倍
3、已知方程 的两个根都是整数,则 的值可以是( )
(A)-1 (B)1 (C)5 (D)以上三个中的任何一个
4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )
A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0
5、用配方法解下列方程时,配方有错误的是( )
A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2-7t-4=0化为 D.3y2-4y-2=0化为
三、解下列方程:(每小题5分,共30分)
(1) (2)

(3) (4)4x2-8x+1=0(用配方法)

(5) 3x2+5(2x+1)=0(用公式法) (6)

四、(本题6分)
(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?

五、(本题6分)
有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?

六、(本题6分)
(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.

七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)
(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.
(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?
(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?

一、填空题:(每空3分,共30分)

1、方程(x–1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .

2、关于x的方程是(m2–1)x2+(m–1)x–2=0,那么当m 时,方程为一元二次方程;

当m 时,方程为一元一次方程.

3、若方程 有增根,则增根x=__________,m= .

4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.

5、若方程kx2–6x+1=0有两个实数根,则k的取值范围是 .

6、设x1、x2是方程3x2+4x–5=0的两根,则 .x12+x22= .

7、关于x的方程2x2+(m2–9)x+m+1=0,当m= 时,两根互为倒数;

当m= 时,两根互为相反数.

8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,

该方程的另一个根x2 = .

9、方程x2+2x+a–1=0有两个负根,则a的取值范围是 .

10、若p2–3p–5=0,q2-3q–5=0,且p≠q,则 .

二、选择题:(每小题3分,共15分)

1、方程 的根的情况是( )

(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根

(C)方程没有实数根 (D)方程的根的情况与 的取值有关

2、已知方程 ,则下列说中,正确的是( )

(A)方程两根和是1 (B)方程两根积是2

(C)方程两根和是-1 (D)方程两根积是两根和的2倍

3、已知方程 的两个根都是整数,则 的值可以是( )

(A)—1 (B)1 (C)5 (D)以上三个中的任何一个

4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )

A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0

5、用配方法解下列方程时,配方有错误的是( )

A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25

C.2t2-7t-4=0化为 D.3y2-4y-2=0化为

三、解下列方程:(每小题5分,共30分)

(1) (2)

(3) (4)4x2–8x+1=0(用配方法)

(5) 3x2+5(2x+1)=0(用公式法) (6)

四、(本题6分)

(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?

五、(本题6分)

有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?

六、(本题6分)

(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.

七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)

(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.

(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?

(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?

01.已知三角形ABC的两边AB AC的长度是关于一元二次方程
x^2-(2k+2)x+k^2=0的的两个根,第三边长为10,问K为何值时三角形ABC为等腰三角形?
02.证明关于x的方程(m^2-8m+17)x^2+2mx+1=0 无论m为任何值,该方程都为一元二次方程

若a为有理数,试探求当b为何值时,关于x的一元二次方程x^2+3(a-1)x+(2a^2+a+b)=0的根为有理数?

2.设关于y的一元二次方程3(m-2)y^2-2(m+1)y-m=0有正整数根,试探求满足条件的整数m

1.已知a是关于x的一元二次方程x2-3x+m=0的一个根,-a是关于x的一元二次方程x2+3x-m=0.试求a的值.

2.如果我们知道方程(k2+2)x2+(5-k)x=1-3kx2 是关于x的一元二次方程.那么你能求得k的值吗?

3(x2+3x+4)(x2+3x+5)=6.通过仔细观察.巧妙解题(不准展开解题.)

4已知m.n是关于x的方程x2-(p-2)x+1=0的两个实数根,求代数式(m2+mp+1)(n2+np+1)的值

1.已知方程x+1/x=a+1/a的2根分别为a,1/a,则方程x+1/(x-1)=a+1/(a-1)的根是_______.
2.若a=3,b=2,则以a,b伟根的一元二次方程(二次项系数为一)是_________.
3.已知方程x^2-2x-1=0的2根是1+√2,1-√2,则分解因式:x^2-2x-1=________.
4.已知方程x^(K-2)+(k-2)x^2+x-k=0,当k取何值时,方程是一元二次方程?
1、 使实系数二次方程2mx[2]+(4m+1)x+2m=0有两个不相等的实数根的m的范围是( )
2、 满足方程x[2]+b[2]=(a-x)[2]的x的值是( )
3、 关于x的方程x[2]-(2a-1)x+a=5的一个解是1,则a的值为( )
4、 a,b,c为不全是0的3个实数,那么关于x的一元二次方程x[2]+(a+b+c)x+(a[2]+b[2]+c[2])=0的根的情况是( )
a 有2个负根 b 有两个正根 c 有2个异号实根 d 无实根
5、 满足x[2]+7x+c=0有实根的最大整数c是( )
6、 方程x[2]+1993x-1994=0和(1994x)[2]-1993·1995x-1=0的较小根依次为a,b,求ab的值

设关于x的一元二次方程x平方+px+q=0的两个根为A,B,且A,B满足lgA+lgB=2,lg(A+B)=2-2lg6+lg9,求一元二次方程及A,B的值!

1、已知a、b 为方程2x*x-5x+1=0的根,不解方程,求值:
(1)1/a+1/b (2)|a-b|

2、已知一元二次方程x*x-2mx-5+2m=0 的两根之差的绝对值等于4倍根号2,求m

方程 (m-3)x^(m^-7) +(m-2)+5=0
(1)m为何值时,方程是一元二次方程;
(2)m为何值时,方程是一元一次方程

X的2a+b次方-2×x的a-b次方+3=0是关于x的一元二次方程,求a、b的值。

已知a、b是一元二次方程x^2+2001x+1=0的两个根,则(1+2003a+a^2)(1+2003b+b^2)=( )
a、1 b、2
c、3 d、4

已知,a、b是一元二次方程x^2+px-1=0的两个实数跟,且3ab+b^2+2=8b。求p的值。

如果关于x的一元二次方程(ax+1)(x-a)=a-2的各项系数之和为3,求a的值,并解此方程

已知一元二次方程(ab-2b)x^2+2(b-a)x+2a-b=0有两个相等的实数根,求1/a+1/b
注:X^2表示X的平方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
御剑乘风S
2008-11-18 · TA获得超过3874个赞
知道答主
回答量:77
采纳率:0%
帮助的人:51.8万
展开全部
3X+189=521
4Y+119=22
3X*189=5
8Z/6=458
3X+77=59
4Y-6985=81
87X*13=5
7Z/93=41
15X+863-65X=54
58Y*55=27489
z*(z-3)=4
方程x2= 的根为 。

2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。

3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。

4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。

5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。

6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。

7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。

8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。

9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。

10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。

二、选择题:(3’×8=24’)

11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )

A、任意实数 B、m≠1 C、m≠-1 D、m>-1

12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )

A、 若x2=4,则x=2 B、若3x2=bx,则x=2

C、 x2+x-k=0的一个根是1,则k=2

D、若分式 的值为零,则x=2

13、方程(x+3)(x-3)=4的根的情况是( )

A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数

14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。

A、-1 B、-4 C、4 D、3

15、已知方程( )2-5( )+6=0,设 =y则可变为( )。

A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0

16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )

A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800

17、已知一元二次方程2x2-3x+3=0,则( )

A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根

18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )

A、2 B、-2 C、-1 D、0

三、解下列方程:(5’×5=25’)

19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)

21、x(8+x)=16 22、
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zsx311
2008-11-15 · TA获得超过1503个赞
知道小有建树答主
回答量:225
采纳率:0%
帮助的人:138万
展开全部
一元一次方程

选择题
1.已知(x+y)∶(x-y)=3∶1,则x∶y=( )。
A、3∶1 B、2∶1 C、1∶1 D、1∶2

2.方程-2x+ m=-3的解是3,则m的值为( )。
A、6 B、-6 C、 D、-18

3.在方程6x+1=1,2x= ,7x-1=x-1,5x=2-x中解为 的方程个数是( )。
A、1个 B、2个 C、3个 D、4个

4.根据“a的3倍与-4绝对值的差等于9”的数量关系可得方程( )。
A、|3a-(-4)|=9 B、|3a-4|=9
C、3|a|-|-4|=9 D、3a-|-4|=9

5.若关于x的方程 =4(x-1)的解为x=3,则a的值为( )。
A、2 B、22 C、10 D、-2

答案与解析

答案:1、B 2、A 3、B 4、D 5、C
解析:
1.分析:本题考查对等式进行恒等变形。
由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化简得:x+y=3x-3y,
得2x-4y=0,即x=2y,x∶y=2∶1。
2.分析:∵ 3是方程-2x+ m=-3的解,
∴ -2×3+ m=-3,
即-6+ m=-3,
∴ m=-3+6,——根据等式的基本性质1
∴ m=6,——根据等式的基本性质2
∴ 选A。
3.分析:6x+1=1的解是0,2x= 的解是 ,7x-1=x-1的解是0,5x=2-x的解是 。
4.略。
5.分析:因为x=3是方程 =4(x-1)的解,故将x=3代入方程满足等式。
一、 多变量型
多变量型一元一次方程解应用题是指在题目往往有多个未知量,多个相等关系的应用题。这些未知量只要设其中一个为x,其他未知量就可以根据题目中的相等关系用含有x的代数式来表示,再根据另一个相等关系列出一个一元一次方程即可。
例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可。
解:设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电 度。依题意,得:

解得:

答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
二、 分段型
分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。
例二:(2005年东营市)某水果批发市场香蕉的价格如下表:
购买香蕉数
(千克) 不超过
20千克 20千克以上
但不超过40千克 40千克以上
每千克价格 6元 5元 4元
张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?
分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克。由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元。我们再分两种情况讨论即可。
解:
1) 当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+5(50-x)=264
解得:x=14
50-14=36(千克)
2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+4(50-x)=264
解得:x=32(不符合题意)
答:第一次购买14千克香蕉,第二次购买36千克香蕉
例三:(2005年湖北省荆门市)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )
住院医疗费(元) 报销率(%)
不超过500元的部分 0
超过500~1000元的部分 60
超过1000~3000元的部分 80
……
A、1000元 B、1250元 C、1500元 D、2000元
解:设此人住院费用为x元,根据题意得:
500×60%+(x-1000)80%=1100
解得:x=2000
所以本题答案D。
三、 方案型
方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程。
例四:(2005年泉州市)某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。
(1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数;
(2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人。请你求出该校初三年级学生的总人数。
分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15
用40座客车的辆数表示总人数:40(x-2)+35。
解:(1)该校初三年级学生的总人数为:30x+15
(2)由题意得:
30x+15=40(x-2)+35
解得:x=6
30x+15=30×6+15=195(人)
答:初三年级总共195人。
四、 数据处理型
数据处理型一元一次方程解应用题往往不直接告诉我们一些条件,需要我们对所给的数据进行分析,获取我们所需的数据。
例五:(2004年北京海淀区)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 6:00 4小时 264千米
请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 264千米
解:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 4:24 2.4小时 264千米
分析:通过表一我们可以得知提速前的火车速度为264÷4=66千米/时,从而得出提速后的速度,再根据表二已经给的数据,算出要求的值。
解:设列车提速后行驶时间为x小时. 根据题意,得

经检验,x=2.4符合题意.
答:到站时刻为4:24,历时2.4小时
例六:(2005浙江省)据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站的里程数(单位:千米) 1500 1130 910 622 402 219 72 0
例如,要确定从B站至E站火车票价,其票价为 (元).
(1) 求A站至F站的火车票价(结果精确到1元);
(2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).
解: (1) 解法一:由已知可得 .
A站至F站实际里程数为1500-219=1281.
所以A站至F站的火车票价为 0.12 1281=153.72 154(元)
解法二:由已知可得A站至F站的火车票价为 (元).
(2)设王大妈实际乘车里程数为x千米,根据题意,得: .
解得 x= (千米).
对照表格可知, D站与G站距离为550千米,所以王大妈是D站或G站下的车.

代数第六章能力自测题
一元一次不等式和一元一次不等式组
初中数学网站http://emath.126.com

分式方程
(一)填空

关于y的方程是_____.

(二)选择

A.x=-3; B.x≠-3;

C.一切实数; D.无解.

C.无解; D.一切实数.

A.x=0; B.x=0,x=1;

C.x=0,x=-1; D.代数式的值不可能为零.

A.a=5; B.a=10;

C.a=10; D.a=15.

A.a=-2; B.a=2;

C.a=1; D.a=-1.

A.一切实数; B.x≠7的一切实数;

C.无解; D.x≠-1,7的一切实数.

A.a=2; B.a只为4;

C.a=4或0; D.以上答案都不对.

A.a>0; B.a>0且a≠1;

C.a>0且a≠0; D.a<0.

A.a<0; B.a<0或a=1;

C.a<0或a=2; D.a>0.

(三)解方程

51.甲、乙两人同时从A地出发,步行30千米到B地甲比乙每小时多走1千米,结果甲比乙早到1小时,两人每小时各走多少千米?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lucy908229337
2008-11-21
知道答主
回答量:9
采纳率:0%
帮助的人:0
展开全部
实数
一、 填空题:
1、 的算术平方根的平方根是
2、若一个正数的平方根是 ,则这个数的另一个平方根是 ,这个数的算术平方根是
3、已知 ,则 =
4、由查表得: 则
5、化简:
6、当 时,式子 有意义
7、 ,则 ,
8、若 ,则 : =
9、若 ,且 则
10、设 都是实数,且满足 ,则
二、 选择题:
11、下列各数中,无理数的个数是 ( )
(每两个1之间多一个0)
A.5 B.4 C.3 D.2
12、平方根等于本身的数是 ( )
A.1 B.-1 C.0 D.1或0
13、若实数 满足 ,则有 ( )
A. B. C. D.
14、如图:数轴上点A所表示的数为 ,则有 的立方根是 ( )

A. B. C.2 D.-2
15、计算: 的值等于 ( )
A.-3 B.-2 C.-1 D.1
16、等式 成立的条件是 ( )
A. B. C. D、 为任意实数
17、如果 则 等于 ( )
A.1993 B.-1993 C.1 D.-1
18、 是实数,则下列各式中恒有意义的是 ( )
A. B. C. D.
19、如果 那么 的值为 ( )
A.16 B.8 C.2 D.4
20、 的算术平方根 ( )
A. B. C. D.
三、 简答题:
21、
22、
23、
24、已知 ,求 的值。
25、已知 ,求 的值
26、 的整数部分为a,小数部分为b,求 的值。

实数标准答案
一、 填空题:
1、 2、 3、1.06354 4、1.6431 0.03524
5、 6、0 7、2, -1 8、1:4
9、1 10、1
二、 选择题:
11、C 12、C 13、D 14、D 15、C
16、D 17、D 18、D 19、A 20、A
三、 简答题:
21、 22、 23、
24、1或3 25、3 26、4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式