二阶偏导数4个公式

二阶偏导数4个公式... 二阶偏导数4个公式 展开
 我来答
晴晴知识加油站
高能答主

2019-07-23 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661078

向TA提问 私信TA
展开全部

∂z/∂x=[√(x²+y²)-x·2x/2√(x²+y²)]/(x²+y²)=y²/[(x²+y²)^(3/2)]

∂z/∂y=-x·2y/2√(x²+y²)^(3/2)]=-xy/[(x²+y²)^(3/2)]

∂²z/∂x²=-(3/2)y²·2x/[(x²+y²)^(5/2)]=-3xy²/[(x²+y²)^(5/2)]

∂²z/∂x∂y=[2y·[(x²+y²)^(3/2)-y²·(3/2)·[(x²+y²)^(1/2)2y]/[(x²+y²)³]

扩展资料

求二阶偏导数的方法:

当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数。

把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。

Iy97yj0
2017-11-22 · 超过21用户采纳过TA的回答
知道答主
回答量:47
采纳率:75%
帮助的人:11.3万
展开全部
z=x/√(x²+y²)
∂z/∂x=[√(x²+y²)-x·2x/2√(x²+y²)]/(x²+y²)=y²/[(x²+y²)^(3/2)]
∂z/∂y=-x·2y/2√(x²+y²)^(3/2)]=-xy/[(x²+y²)^(3/2)]
∂²z/∂x²=-(3/2)y²·2x/[(x²+y²)^(5/2)]=-3xy²/[(x²+y²)^(5/2)]
∂²z/∂x∂y=[2y·[(x²+y²)^(3/2)-y²·(3/2)·[(x²+y²)^(1/2)2y]/[(x²+y²)³]
=(2x²y-y³)/[(x²+y²)^(5/2)]
∂²z/∂y²=(2xy²-x³)/[(x²+y²)^(5/2)]
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式