求助这道题卷积怎么做?求过程,谢谢
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
2017-10-27
展开全部
证明:n=1时,7^n+13^n=7+13=20.能被10整除.
设n=2k-1,k∈N时,7^(2k-1)+13^(2k-1)能被10整除,设7^(2k-1)+13^(2k-1)=10m(m∈N)
则n=2k+1,k∈N时,
有7^(2k+1)+13^(2k+1)
=7^(2k-1)*7^2+13^(2k-1)*13^2
=[10m-13^(2k-1)]*49+13^(2k-1)*169
=490m-13^(2k-1)*49+13^(2k-1)*169
=490m+13^(2k-1)*(169-49)
=490m+13^(2k-1)*120
=10[49m+13^(2k-1)*12]
10[49m+13^(2k-1)*12]能被10整除,所以n=2k+1,7^(2k+1)+13^(2k+1)也能被10整除,
综上,n属于奇数时,7^n+13^n能被10整除
设n=2k-1,k∈N时,7^(2k-1)+13^(2k-1)能被10整除,设7^(2k-1)+13^(2k-1)=10m(m∈N)
则n=2k+1,k∈N时,
有7^(2k+1)+13^(2k+1)
=7^(2k-1)*7^2+13^(2k-1)*13^2
=[10m-13^(2k-1)]*49+13^(2k-1)*169
=490m-13^(2k-1)*49+13^(2k-1)*169
=490m+13^(2k-1)*(169-49)
=490m+13^(2k-1)*120
=10[49m+13^(2k-1)*12]
10[49m+13^(2k-1)*12]能被10整除,所以n=2k+1,7^(2k+1)+13^(2k+1)也能被10整除,
综上,n属于奇数时,7^n+13^n能被10整除
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询