1个回答
展开全部
lim<x→2>[√(x+2)-√(6-x)]/(x²-4)
=lim<x→2>[√(x+2)-√(6-x)]*[√(x+2)+√(6-x)]/(x²-4)*[√(x+2)+√(6-x)]
=lim<x→2>[(x+2)-(6-x)]/(x+2)(x-2)[√(x+2)+√(6-x)]
=lim<x→2>2(x-2)/(x+2)(x-2)[√(x+2)+√(6-x)]
=lim<x→2>2/(x+2)[√(x+2)+√(6-x)]
=2/(4×4)
=1/8
=lim<x→2>[√(x+2)-√(6-x)]*[√(x+2)+√(6-x)]/(x²-4)*[√(x+2)+√(6-x)]
=lim<x→2>[(x+2)-(6-x)]/(x+2)(x-2)[√(x+2)+√(6-x)]
=lim<x→2>2(x-2)/(x+2)(x-2)[√(x+2)+√(6-x)]
=lim<x→2>2/(x+2)[√(x+2)+√(6-x)]
=2/(4×4)
=1/8
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询