1个回答
2017-10-14
展开全部
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α
A²-A的特征值为 0 ,2,6,...,n²-n
【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α
A²-A的特征值为 0 ,2,6,...,n²-n
【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询