展开全部
先单位化,再正交化,但这样最后得到的那个矩阵不一定是正交阵,所以需要最后再单位化一次。向量组等价的基本判定是:两个向量组可以互相线性表示。
需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。
扩展资料:
向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。
由于把一个正交向量组中每个向量经过单位化,就得到一个标准正交向量组,所以,上述问题的关键是如何由一个线性无关向量组来构造出一个正交向量组,我们以3个向量组成的线性无关组为例来说明这个方法。
从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。
参考资料来源:百度百科——等价向量组
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
一定。设a,b是两个非零的正交向量,则ab=0若存在k1,k2 使得k1a+k2b=0则0=(k1a+k2b)a=k1a^2+k2ab=k1a^2 得k1=00=(k1a+k2b)b=k2b^2+k1ab=k2b^2 得k2=0所以 a,b...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询