10个回答
展开全部
近期,经常听到这样一句特别豪气的话“我家里有矿”!对于数据而言,没有大数据技术的数据一无是处,但经过大数据技术处理的数据,就是金矿,价值连城!
面临能将“矿”玩弄于股掌之间的大数据技术,谁能坐怀不乱?谁又能忍心放弃这个难得的机遇呢?那么问题来了,该如何学习大数据技术呢?学习是一项很好的技能,但也需要循序渐进!
学习大数据的头一步:打好基础,比高逼格的大数据技术更重要!而基础知识就是:编程语言和linux操作系统。
我们以java编程为例,当然了你所擅长的编程语言也可以是python、Scala等!
Java:只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下,有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
接下来就是大数据技术的两大生态系统:Hadoop生态系统和spark生态系统。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好的利用HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
以上很多都是必须的理论技术知识,想要成功就业,光纸上谈兵不行,还需要一定的实战经验才行,寻找一些大数据相关的项目进行练练手,巩固一下自己的技术。
以上就是对如何学习大数据的简单总结,如果学完之后仍有余力,自然也是可以学习机器学习、人工智能等技术知识吗,对你以后的就业会有很大的优势!
面临能将“矿”玩弄于股掌之间的大数据技术,谁能坐怀不乱?谁又能忍心放弃这个难得的机遇呢?那么问题来了,该如何学习大数据技术呢?学习是一项很好的技能,但也需要循序渐进!
学习大数据的头一步:打好基础,比高逼格的大数据技术更重要!而基础知识就是:编程语言和linux操作系统。
我们以java编程为例,当然了你所擅长的编程语言也可以是python、Scala等!
Java:只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下,有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
接下来就是大数据技术的两大生态系统:Hadoop生态系统和spark生态系统。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好的利用HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
以上很多都是必须的理论技术知识,想要成功就业,光纸上谈兵不行,还需要一定的实战经验才行,寻找一些大数据相关的项目进行练练手,巩固一下自己的技术。
以上就是对如何学习大数据的简单总结,如果学完之后仍有余力,自然也是可以学习机器学习、人工智能等技术知识吗,对你以后的就业会有很大的优势!
2019-11-28 · 大数据人才培养的机构
加米谷大数据科技
成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。公司由来自华为、京东、星环、勤智等国内知名企业的多位技术大牛联合创办。面向社会提供大数据、人工智能等前沿技术的培训业务。
向TA提问
关注
展开全部
可以先关注一些大数据领域的动态,找一些相关的学习资料,以及大数据入门的书籍,了解什么是大数据,有哪些岗位就业方向、基本的技术知识等。
大数据有各方面的工作,有需要用到高深的技术的,也有简单的工作,主要你愿意并且有决心从事大数据相关工作,不管你先前读什么专业,一定能找到适合你的切入点,进入大数据行业工作。
大数据应用到不同的行业侧重点会有不同,不同的岗位对技能要求的侧重也不同。零基础想要进入大数据行业,首先要搞清楚大数据产业链的情况,接下来要明确大数据技术栈也就是相关技术体系,选定一个自己想要从事的方向,了解所选岗位方向侧重的技能有哪些,定下学习目标和应用方向。
大数据有各方面的工作,有需要用到高深的技术的,也有简单的工作,主要你愿意并且有决心从事大数据相关工作,不管你先前读什么专业,一定能找到适合你的切入点,进入大数据行业工作。
大数据应用到不同的行业侧重点会有不同,不同的岗位对技能要求的侧重也不同。零基础想要进入大数据行业,首先要搞清楚大数据产业链的情况,接下来要明确大数据技术栈也就是相关技术体系,选定一个自己想要从事的方向,了解所选岗位方向侧重的技能有哪些,定下学习目标和应用方向。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
正常来讲,零基础大数据培训的话大概是4-5个月的时间,因为像大数据之类的技术性工作需要学习的专业知识有很多,时间短了根本学不会,我是在光环大数据从零基础学,每天白天上课,晚上做练习复习,还做了很多实战项目,大概5个月的时间,感觉学到了很多知识,现在在工作的过程中,也在不断提升自己,培训只是相当于走了条捷径,能有人带你入行,真正还需要靠自己的努力。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
虽然现在大数据人工智能发展的很好,但是自学的话还是很难达到公司要求的,当初我自学了一年的大数据,天天在网上找一些免费的资料和视频看,但是遇到问题了也没人能帮我解决的,所以学的很吃力也很慢,后来勉强懂一些后台、hadoop方面的知识,但是只能说是皮毛,只是了解一些简单的知识,公司照样不要,后来去中公优就业学习了半年左右,面了2家就找到工作了,当初涉世不深给7千就干了,后来待没多久就跳槽了,几乎工资翻了一倍。所以说啊,自己自学比较浪费时间还学不好,去培训机构虽然花钱了但是节省了很多时间学的也比自学的好,本人的前车之鉴,希望能帮到你
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |