∫x²/(x²-3*x+3)²dx不定积分是多少?
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
∫x^2/(x^2-3x+3)^2 dx
=∫dx/(x^2-3x+3) + ∫(3x-3)/(x^2-3x+3)^2 dx
=∫dx/(x^2-3x+3) + (3/2)∫(2x-3)/(x^2-3x+3)^2 dx +(3/2)∫dx/(x^2-3x+3)^2
=∫dx/(x^2-3x+3) - (3/2)[1/(x^2-3x+3)] +(3/2)∫dx/(x^2-3x+3)^2
=(2√3/3)arctan[( 2x-3)/√3] -(3/2)[1/(x^2-3x+3)]
+(2√3/3){ arctan[( 2x-3)/√3]+ √3 .(2x-3)/[4(x^2-3x+3)] }+ C
=(4√3/3)arctan[( 2x-3)/√3] +(x-3)/(x^2-3x+3)+ C
//
x^2-3x+3 = (x- 3/2)^2 + 3/4
let
x-3/2= (√3/2)tanu
dx= (√3/2)(secu)^2 du
∫dx/(x^2-3x+3)
=∫(√3/2)(secu)^2 du/ [(3/4) (secu)^2]
=(2√3/3)∫ du
=(2√3/3)u + C
=(2√3/3)arctan[( 2x-3)/√3] +C'
//
∫dx/(x^2-3x+3)^2
=∫(√3/2)(secu)^2 du/ [(9/16)(secu)^4 ]
=(8√3/9)∫ (cosu)^2 du
=(4√3/9)∫ (1+cos2u) du
=(4√3/9)[ u+(1/2)sin2u ] + C''
=(4√3/9){ arctan[( 2x-3)/√3]+ √3 .(2x-3)/[4(x^2-3x+3)] }+ C''
=∫dx/(x^2-3x+3) + ∫(3x-3)/(x^2-3x+3)^2 dx
=∫dx/(x^2-3x+3) + (3/2)∫(2x-3)/(x^2-3x+3)^2 dx +(3/2)∫dx/(x^2-3x+3)^2
=∫dx/(x^2-3x+3) - (3/2)[1/(x^2-3x+3)] +(3/2)∫dx/(x^2-3x+3)^2
=(2√3/3)arctan[( 2x-3)/√3] -(3/2)[1/(x^2-3x+3)]
+(2√3/3){ arctan[( 2x-3)/√3]+ √3 .(2x-3)/[4(x^2-3x+3)] }+ C
=(4√3/3)arctan[( 2x-3)/√3] +(x-3)/(x^2-3x+3)+ C
//
x^2-3x+3 = (x- 3/2)^2 + 3/4
let
x-3/2= (√3/2)tanu
dx= (√3/2)(secu)^2 du
∫dx/(x^2-3x+3)
=∫(√3/2)(secu)^2 du/ [(3/4) (secu)^2]
=(2√3/3)∫ du
=(2√3/3)u + C
=(2√3/3)arctan[( 2x-3)/√3] +C'
//
∫dx/(x^2-3x+3)^2
=∫(√3/2)(secu)^2 du/ [(9/16)(secu)^4 ]
=(8√3/9)∫ (cosu)^2 du
=(4√3/9)∫ (1+cos2u) du
=(4√3/9)[ u+(1/2)sin2u ] + C''
=(4√3/9){ arctan[( 2x-3)/√3]+ √3 .(2x-3)/[4(x^2-3x+3)] }+ C''
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询